Approximation Algorithms for k-Line Center

Given a set P of n points in ℝd and an integer k ≥ 1, let w* denote the minimum value so that P can be covered by k cylinders of radius at most w*. We describe an algorithm that, given P and an ɛ > 0, computes k cylinders of radius at most (1 + ɛ)w* that cover P. The running time of the algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Agarwal, Pankaj K., Procopiuc, Cecilia M., Varadarajan, Kasturi R.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue
container_start_page 54
container_title
container_volume 2461
creator Agarwal, Pankaj K.
Procopiuc, Cecilia M.
Varadarajan, Kasturi R.
description Given a set P of n points in ℝd and an integer k ≥ 1, let w* denote the minimum value so that P can be covered by k cylinders of radius at most w*. We describe an algorithm that, given P and an ɛ > 0, computes k cylinders of radius at most (1 + ɛ)w* that cover P. The running time of the algorithm is O(n log n), with the constant of proportionality depending on k, d, and ɛ. We first show that there exists a small “certificate” Q ⊆ P, whose size does not depend on n, such that for any k-cylinders that cover Q, an expansion of these cylinders by a factor of (1+ɛ) covers P. We then use a well-known scheme based on sampling and iterated re-weighting for computing the cylinders.
doi_str_mv 10.1007/3-540-45749-6_9
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14724769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072966_15_69</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-1a187c2d971f20357a0b2f395931b0dbc8d8279875e05e85dfba25d1276217063</originalsourceid><addsrcrecordid>eNotUMlOwzAQNasIpWeuuXBBMni8-1hVbFIkLnC2nMRpQ9Mk2EGCv8dd5jKaeW_ezDyEboE8ACHqkWHBCeZCcYOlNSfomqXGvpanKAMJgBnj5uwIcNBEn6OMMEKxUZxdoswILSgwZa7QPMYvkoJRAAMZul-MYxh-262b2qHPF91qCO203sa8GUK-wUXb-3zp-8mHG3TRuC76-THP0Ofz08fyFRfvL2_LRYErBnTC4ECritZGQUMJE8qRkjbMCMOgJHVZ6VpTZbQSngivRd2UjooaqJIUFJFshu4OuqOLleua4PqqjXYM6cjwZ4ErypU0iYcPvJigfuWDLYdhEy0Qu3POMpv8sHunbHIu8elRNwzfPz5O1u8GqvRccF21dmN6MlpGFDVSWhA2LfkH6_Zo8g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072966_15_69</pqid></control><display><type>book_chapter</type><title>Approximation Algorithms for k-Line Center</title><source>Springer Books</source><creator>Agarwal, Pankaj K. ; Procopiuc, Cecilia M. ; Varadarajan, Kasturi R.</creator><contributor>Raman, Rajeev ; Möhring, Rolf ; Raman, Rajeev ; Möhring, Rolf</contributor><creatorcontrib>Agarwal, Pankaj K. ; Procopiuc, Cecilia M. ; Varadarajan, Kasturi R. ; Raman, Rajeev ; Möhring, Rolf ; Raman, Rajeev ; Möhring, Rolf</creatorcontrib><description>Given a set P of n points in ℝd and an integer k ≥ 1, let w* denote the minimum value so that P can be covered by k cylinders of radius at most w*. We describe an algorithm that, given P and an ɛ &gt; 0, computes k cylinders of radius at most (1 + ɛ)w* that cover P. The running time of the algorithm is O(n log n), with the constant of proportionality depending on k, d, and ɛ. We first show that there exists a small “certificate” Q ⊆ P, whose size does not depend on n, such that for any k-cylinders that cover Q, an expansion of these cylinders by a factor of (1+ɛ) covers P. We then use a well-known scheme based on sampling and iterated re-weighting for computing the cylinders.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540441808</identifier><identifier>ISBN: 9783540441809</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540457496</identifier><identifier>EISBN: 9783540457497</identifier><identifier>DOI: 10.1007/3-540-45749-6_9</identifier><identifier>OCLC: 958521379</identifier><identifier>LCCallNum: QA76.6-76.66</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Algorithms - ESA 2002, 2002, Vol.2461, p.54-63</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-1a187c2d971f20357a0b2f395931b0dbc8d8279875e05e85dfba25d1276217063</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072966-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45749-6_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45749-6_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14724769$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Raman, Rajeev</contributor><contributor>Möhring, Rolf</contributor><contributor>Raman, Rajeev</contributor><contributor>Möhring, Rolf</contributor><creatorcontrib>Agarwal, Pankaj K.</creatorcontrib><creatorcontrib>Procopiuc, Cecilia M.</creatorcontrib><creatorcontrib>Varadarajan, Kasturi R.</creatorcontrib><title>Approximation Algorithms for k-Line Center</title><title>Algorithms - ESA 2002</title><description>Given a set P of n points in ℝd and an integer k ≥ 1, let w* denote the minimum value so that P can be covered by k cylinders of radius at most w*. We describe an algorithm that, given P and an ɛ &gt; 0, computes k cylinders of radius at most (1 + ɛ)w* that cover P. The running time of the algorithm is O(n log n), with the constant of proportionality depending on k, d, and ɛ. We first show that there exists a small “certificate” Q ⊆ P, whose size does not depend on n, such that for any k-cylinders that cover Q, an expansion of these cylinders by a factor of (1+ɛ) covers P. We then use a well-known scheme based on sampling and iterated re-weighting for computing the cylinders.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540441808</isbn><isbn>9783540441809</isbn><isbn>3540457496</isbn><isbn>9783540457497</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUMlOwzAQNasIpWeuuXBBMni8-1hVbFIkLnC2nMRpQ9Mk2EGCv8dd5jKaeW_ezDyEboE8ACHqkWHBCeZCcYOlNSfomqXGvpanKAMJgBnj5uwIcNBEn6OMMEKxUZxdoswILSgwZa7QPMYvkoJRAAMZul-MYxh-262b2qHPF91qCO203sa8GUK-wUXb-3zp-8mHG3TRuC76-THP0Ofz08fyFRfvL2_LRYErBnTC4ECritZGQUMJE8qRkjbMCMOgJHVZ6VpTZbQSngivRd2UjooaqJIUFJFshu4OuqOLleua4PqqjXYM6cjwZ4ErypU0iYcPvJigfuWDLYdhEy0Qu3POMpv8sHunbHIu8elRNwzfPz5O1u8GqvRccF21dmN6MlpGFDVSWhA2LfkH6_Zo8g</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Agarwal, Pankaj K.</creator><creator>Procopiuc, Cecilia M.</creator><creator>Varadarajan, Kasturi R.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Approximation Algorithms for k-Line Center</title><author>Agarwal, Pankaj K. ; Procopiuc, Cecilia M. ; Varadarajan, Kasturi R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-1a187c2d971f20357a0b2f395931b0dbc8d8279875e05e85dfba25d1276217063</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Pankaj K.</creatorcontrib><creatorcontrib>Procopiuc, Cecilia M.</creatorcontrib><creatorcontrib>Varadarajan, Kasturi R.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, Pankaj K.</au><au>Procopiuc, Cecilia M.</au><au>Varadarajan, Kasturi R.</au><au>Raman, Rajeev</au><au>Möhring, Rolf</au><au>Raman, Rajeev</au><au>Möhring, Rolf</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Approximation Algorithms for k-Line Center</atitle><btitle>Algorithms - ESA 2002</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2461</volume><spage>54</spage><epage>63</epage><pages>54-63</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540441808</isbn><isbn>9783540441809</isbn><eisbn>3540457496</eisbn><eisbn>9783540457497</eisbn><abstract>Given a set P of n points in ℝd and an integer k ≥ 1, let w* denote the minimum value so that P can be covered by k cylinders of radius at most w*. We describe an algorithm that, given P and an ɛ &gt; 0, computes k cylinders of radius at most (1 + ɛ)w* that cover P. The running time of the algorithm is O(n log n), with the constant of proportionality depending on k, d, and ɛ. We first show that there exists a small “certificate” Q ⊆ P, whose size does not depend on n, such that for any k-cylinders that cover Q, an expansion of these cylinders by a factor of (1+ɛ) covers P. We then use a well-known scheme based on sampling and iterated re-weighting for computing the cylinders.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45749-6_9</doi><oclcid>958521379</oclcid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Algorithms - ESA 2002, 2002, Vol.2461, p.54-63
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14724769
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title Approximation Algorithms for k-Line Center
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Approximation%20Algorithms%20for%20k-Line%20Center&rft.btitle=Algorithms%20-%20ESA%202002&rft.au=Agarwal,%20Pankaj%20K.&rft.date=2002&rft.volume=2461&rft.spage=54&rft.epage=63&rft.pages=54-63&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540441808&rft.isbn_list=9783540441809&rft_id=info:doi/10.1007/3-540-45749-6_9&rft_dat=%3Cproquest_pasca%3EEBC3072966_15_69%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540457496&rft.eisbn_list=9783540457497&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072966_15_69&rft_id=info:pmid/&rfr_iscdi=true