Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability

In an earlier paper, the van der Waals equation of state was used in combination with a common mathematical artifice for the solid-phase fugacity function to map out the slg loci for a model binary homologous series of solvent+solute mixtures as a function of the solute's parametric characteriz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid phase equilibria 2000-05, Vol.171 (1), p.11-26
Hauptverfasser: Labadie, J.A, Garcia, D.C, Luks, K.D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 11
container_title Fluid phase equilibria
container_volume 171
creator Labadie, J.A
Garcia, D.C
Luks, K.D
description In an earlier paper, the van der Waals equation of state was used in combination with a common mathematical artifice for the solid-phase fugacity function to map out the slg loci for a model binary homologous series of solvent+solute mixtures as a function of the solute's parametric characterization. The computations suggested new possibilities for solid–fluid phase equilibrium topography, heretofore not reported in the literature. To provide a better understanding of these computations, the authors have computed and mapped out the critical point loci, concurrently applying phase and system stability analysis. These new computations, which confirm the earlier solid–fluid computations, provide a detailed picture of how the solid–fluid topography for this particular series of model mixtures evolves as solvent–solute parametric differences increase.
doi_str_mv 10.1016/S0378-3812(00)00355-1
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1468487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378381200003551</els_id><sourcerecordid>S0378381200003551</sourcerecordid><originalsourceid>FETCH-LOGICAL-e170t-64b52d39c016354eee3536c8825c0f78411f6879137e054c9b76b445226d31813</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKuPIGThQhdTb34ndSNS_CkUFNR1yCQZGhmnY5Iq3fkOvqFP4rQVcXW58HE450PomMCIAJHnj8BKVTBF6CnAGQAToiA7aEBUOS6AUr6LBn_IPjpI6QUAiJB0gNyDydnHNuFFjdOiCe7786tulsHhbm6Sx_5tGZpQxWAu8HQ6wtO2x7vGrPBHyHP8H7Ux5GBNE_IKm9bhlE0V1t8h2qtNk_zR7x2i55vrp8ldMbu_nU6uZoUnJeRC8kpQx8a2H8UE994zwaRVigoLdak4IbXsNxFWehDcjqtSVpwLSqVjRBE2RCfb3M6kvkcdTWtD0l0MryauNOFScVX22OUW832X9-CjTjb41noXordZu0XQBPTard641WtxGkBv3GrCfgD4GG2K</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability</title><source>Elsevier ScienceDirect Journals</source><creator>Labadie, J.A ; Garcia, D.C ; Luks, K.D</creator><creatorcontrib>Labadie, J.A ; Garcia, D.C ; Luks, K.D</creatorcontrib><description>In an earlier paper, the van der Waals equation of state was used in combination with a common mathematical artifice for the solid-phase fugacity function to map out the slg loci for a model binary homologous series of solvent+solute mixtures as a function of the solute's parametric characterization. The computations suggested new possibilities for solid–fluid phase equilibrium topography, heretofore not reported in the literature. To provide a better understanding of these computations, the authors have computed and mapped out the critical point loci, concurrently applying phase and system stability analysis. These new computations, which confirm the earlier solid–fluid computations, provide a detailed picture of how the solid–fluid topography for this particular series of model mixtures evolves as solvent–solute parametric differences increase.</description><identifier>ISSN: 0378-3812</identifier><identifier>EISSN: 1879-0224</identifier><identifier>DOI: 10.1016/S0378-3812(00)00355-1</identifier><identifier>CODEN: FPEQDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Binary mixtures ; Chemistry ; Criticality ; Exact sciences and technology ; General and physical chemistry ; Others (including liquid-liquid-vapor equilibria) ; Phase equilibria ; Solid–fluid equilibrium ; Stability ; van der Waals</subject><ispartof>Fluid phase equilibria, 2000-05, Vol.171 (1), p.11-26</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378381200003551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1468487$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Labadie, J.A</creatorcontrib><creatorcontrib>Garcia, D.C</creatorcontrib><creatorcontrib>Luks, K.D</creatorcontrib><title>Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability</title><title>Fluid phase equilibria</title><description>In an earlier paper, the van der Waals equation of state was used in combination with a common mathematical artifice for the solid-phase fugacity function to map out the slg loci for a model binary homologous series of solvent+solute mixtures as a function of the solute's parametric characterization. The computations suggested new possibilities for solid–fluid phase equilibrium topography, heretofore not reported in the literature. To provide a better understanding of these computations, the authors have computed and mapped out the critical point loci, concurrently applying phase and system stability analysis. These new computations, which confirm the earlier solid–fluid computations, provide a detailed picture of how the solid–fluid topography for this particular series of model mixtures evolves as solvent–solute parametric differences increase.</description><subject>Binary mixtures</subject><subject>Chemistry</subject><subject>Criticality</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Others (including liquid-liquid-vapor equilibria)</subject><subject>Phase equilibria</subject><subject>Solid–fluid equilibrium</subject><subject>Stability</subject><subject>van der Waals</subject><issn>0378-3812</issn><issn>1879-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEUhYMoWKuPIGThQhdTb34ndSNS_CkUFNR1yCQZGhmnY5Iq3fkOvqFP4rQVcXW58HE450PomMCIAJHnj8BKVTBF6CnAGQAToiA7aEBUOS6AUr6LBn_IPjpI6QUAiJB0gNyDydnHNuFFjdOiCe7786tulsHhbm6Sx_5tGZpQxWAu8HQ6wtO2x7vGrPBHyHP8H7Ux5GBNE_IKm9bhlE0V1t8h2qtNk_zR7x2i55vrp8ldMbu_nU6uZoUnJeRC8kpQx8a2H8UE994zwaRVigoLdak4IbXsNxFWehDcjqtSVpwLSqVjRBE2RCfb3M6kvkcdTWtD0l0MryauNOFScVX22OUW832X9-CjTjb41noXordZu0XQBPTard641WtxGkBv3GrCfgD4GG2K</recordid><startdate>20000528</startdate><enddate>20000528</enddate><creator>Labadie, J.A</creator><creator>Garcia, D.C</creator><creator>Luks, K.D</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope></search><sort><creationdate>20000528</creationdate><title>Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability</title><author>Labadie, J.A ; Garcia, D.C ; Luks, K.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e170t-64b52d39c016354eee3536c8825c0f78411f6879137e054c9b76b445226d31813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Binary mixtures</topic><topic>Chemistry</topic><topic>Criticality</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Others (including liquid-liquid-vapor equilibria)</topic><topic>Phase equilibria</topic><topic>Solid–fluid equilibrium</topic><topic>Stability</topic><topic>van der Waals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labadie, J.A</creatorcontrib><creatorcontrib>Garcia, D.C</creatorcontrib><creatorcontrib>Luks, K.D</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Fluid phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labadie, J.A</au><au>Garcia, D.C</au><au>Luks, K.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability</atitle><jtitle>Fluid phase equilibria</jtitle><date>2000-05-28</date><risdate>2000</risdate><volume>171</volume><issue>1</issue><spage>11</spage><epage>26</epage><pages>11-26</pages><issn>0378-3812</issn><eissn>1879-0224</eissn><coden>FPEQDT</coden><abstract>In an earlier paper, the van der Waals equation of state was used in combination with a common mathematical artifice for the solid-phase fugacity function to map out the slg loci for a model binary homologous series of solvent+solute mixtures as a function of the solute's parametric characterization. The computations suggested new possibilities for solid–fluid phase equilibrium topography, heretofore not reported in the literature. To provide a better understanding of these computations, the authors have computed and mapped out the critical point loci, concurrently applying phase and system stability analysis. These new computations, which confirm the earlier solid–fluid computations, provide a detailed picture of how the solid–fluid topography for this particular series of model mixtures evolves as solvent–solute parametric differences increase.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-3812(00)00355-1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-3812
ispartof Fluid phase equilibria, 2000-05, Vol.171 (1), p.11-26
issn 0378-3812
1879-0224
language eng
recordid cdi_pascalfrancis_primary_1468487
source Elsevier ScienceDirect Journals
subjects Binary mixtures
Chemistry
Criticality
Exact sciences and technology
General and physical chemistry
Others (including liquid-liquid-vapor equilibria)
Phase equilibria
Solid–fluid equilibrium
Stability
van der Waals
title Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20of%20solid%E2%80%93fluid%20phase%20equilibria:%20II.%20Interplay%20with%20fluid%20phase%20criticality%20and%20stability&rft.jtitle=Fluid%20phase%20equilibria&rft.au=Labadie,%20J.A&rft.date=2000-05-28&rft.volume=171&rft.issue=1&rft.spage=11&rft.epage=26&rft.pages=11-26&rft.issn=0378-3812&rft.eissn=1879-0224&rft.coden=FPEQDT&rft_id=info:doi/10.1016/S0378-3812(00)00355-1&rft_dat=%3Celsevier_pasca%3ES0378381200003551%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378381200003551&rfr_iscdi=true