Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability
In an earlier paper, the van der Waals equation of state was used in combination with a common mathematical artifice for the solid-phase fugacity function to map out the slg loci for a model binary homologous series of solvent+solute mixtures as a function of the solute's parametric characteriz...
Gespeichert in:
Veröffentlicht in: | Fluid phase equilibria 2000-05, Vol.171 (1), p.11-26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Fluid phase equilibria |
container_volume | 171 |
creator | Labadie, J.A Garcia, D.C Luks, K.D |
description | In an earlier paper, the van der Waals equation of state was used in combination with a common mathematical artifice for the solid-phase fugacity function to map out the slg loci for a model binary homologous series of solvent+solute mixtures as a function of the solute's parametric characterization. The computations suggested new possibilities for solid–fluid phase equilibrium topography, heretofore not reported in the literature. To provide a better understanding of these computations, the authors have computed and mapped out the critical point loci, concurrently applying phase and system stability analysis. These new computations, which confirm the earlier solid–fluid computations, provide a detailed picture of how the solid–fluid topography for this particular series of model mixtures evolves as solvent–solute parametric differences increase. |
doi_str_mv | 10.1016/S0378-3812(00)00355-1 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1468487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378381200003551</els_id><sourcerecordid>S0378381200003551</sourcerecordid><originalsourceid>FETCH-LOGICAL-e170t-64b52d39c016354eee3536c8825c0f78411f6879137e054c9b76b445226d31813</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKuPIGThQhdTb34ndSNS_CkUFNR1yCQZGhmnY5Iq3fkOvqFP4rQVcXW58HE450PomMCIAJHnj8BKVTBF6CnAGQAToiA7aEBUOS6AUr6LBn_IPjpI6QUAiJB0gNyDydnHNuFFjdOiCe7786tulsHhbm6Sx_5tGZpQxWAu8HQ6wtO2x7vGrPBHyHP8H7Ux5GBNE_IKm9bhlE0V1t8h2qtNk_zR7x2i55vrp8ldMbu_nU6uZoUnJeRC8kpQx8a2H8UE994zwaRVigoLdak4IbXsNxFWehDcjqtSVpwLSqVjRBE2RCfb3M6kvkcdTWtD0l0MryauNOFScVX22OUW832X9-CjTjb41noXordZu0XQBPTard641WtxGkBv3GrCfgD4GG2K</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability</title><source>Elsevier ScienceDirect Journals</source><creator>Labadie, J.A ; Garcia, D.C ; Luks, K.D</creator><creatorcontrib>Labadie, J.A ; Garcia, D.C ; Luks, K.D</creatorcontrib><description>In an earlier paper, the van der Waals equation of state was used in combination with a common mathematical artifice for the solid-phase fugacity function to map out the slg loci for a model binary homologous series of solvent+solute mixtures as a function of the solute's parametric characterization. The computations suggested new possibilities for solid–fluid phase equilibrium topography, heretofore not reported in the literature. To provide a better understanding of these computations, the authors have computed and mapped out the critical point loci, concurrently applying phase and system stability analysis. These new computations, which confirm the earlier solid–fluid computations, provide a detailed picture of how the solid–fluid topography for this particular series of model mixtures evolves as solvent–solute parametric differences increase.</description><identifier>ISSN: 0378-3812</identifier><identifier>EISSN: 1879-0224</identifier><identifier>DOI: 10.1016/S0378-3812(00)00355-1</identifier><identifier>CODEN: FPEQDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Binary mixtures ; Chemistry ; Criticality ; Exact sciences and technology ; General and physical chemistry ; Others (including liquid-liquid-vapor equilibria) ; Phase equilibria ; Solid–fluid equilibrium ; Stability ; van der Waals</subject><ispartof>Fluid phase equilibria, 2000-05, Vol.171 (1), p.11-26</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378381200003551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1468487$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Labadie, J.A</creatorcontrib><creatorcontrib>Garcia, D.C</creatorcontrib><creatorcontrib>Luks, K.D</creatorcontrib><title>Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability</title><title>Fluid phase equilibria</title><description>In an earlier paper, the van der Waals equation of state was used in combination with a common mathematical artifice for the solid-phase fugacity function to map out the slg loci for a model binary homologous series of solvent+solute mixtures as a function of the solute's parametric characterization. The computations suggested new possibilities for solid–fluid phase equilibrium topography, heretofore not reported in the literature. To provide a better understanding of these computations, the authors have computed and mapped out the critical point loci, concurrently applying phase and system stability analysis. These new computations, which confirm the earlier solid–fluid computations, provide a detailed picture of how the solid–fluid topography for this particular series of model mixtures evolves as solvent–solute parametric differences increase.</description><subject>Binary mixtures</subject><subject>Chemistry</subject><subject>Criticality</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Others (including liquid-liquid-vapor equilibria)</subject><subject>Phase equilibria</subject><subject>Solid–fluid equilibrium</subject><subject>Stability</subject><subject>van der Waals</subject><issn>0378-3812</issn><issn>1879-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEUhYMoWKuPIGThQhdTb34ndSNS_CkUFNR1yCQZGhmnY5Iq3fkOvqFP4rQVcXW58HE450PomMCIAJHnj8BKVTBF6CnAGQAToiA7aEBUOS6AUr6LBn_IPjpI6QUAiJB0gNyDydnHNuFFjdOiCe7786tulsHhbm6Sx_5tGZpQxWAu8HQ6wtO2x7vGrPBHyHP8H7Ux5GBNE_IKm9bhlE0V1t8h2qtNk_zR7x2i55vrp8ldMbu_nU6uZoUnJeRC8kpQx8a2H8UE994zwaRVigoLdak4IbXsNxFWehDcjqtSVpwLSqVjRBE2RCfb3M6kvkcdTWtD0l0MryauNOFScVX22OUW832X9-CjTjb41noXordZu0XQBPTard641WtxGkBv3GrCfgD4GG2K</recordid><startdate>20000528</startdate><enddate>20000528</enddate><creator>Labadie, J.A</creator><creator>Garcia, D.C</creator><creator>Luks, K.D</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope></search><sort><creationdate>20000528</creationdate><title>Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability</title><author>Labadie, J.A ; Garcia, D.C ; Luks, K.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e170t-64b52d39c016354eee3536c8825c0f78411f6879137e054c9b76b445226d31813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Binary mixtures</topic><topic>Chemistry</topic><topic>Criticality</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Others (including liquid-liquid-vapor equilibria)</topic><topic>Phase equilibria</topic><topic>Solid–fluid equilibrium</topic><topic>Stability</topic><topic>van der Waals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labadie, J.A</creatorcontrib><creatorcontrib>Garcia, D.C</creatorcontrib><creatorcontrib>Luks, K.D</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Fluid phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labadie, J.A</au><au>Garcia, D.C</au><au>Luks, K.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability</atitle><jtitle>Fluid phase equilibria</jtitle><date>2000-05-28</date><risdate>2000</risdate><volume>171</volume><issue>1</issue><spage>11</spage><epage>26</epage><pages>11-26</pages><issn>0378-3812</issn><eissn>1879-0224</eissn><coden>FPEQDT</coden><abstract>In an earlier paper, the van der Waals equation of state was used in combination with a common mathematical artifice for the solid-phase fugacity function to map out the slg loci for a model binary homologous series of solvent+solute mixtures as a function of the solute's parametric characterization. The computations suggested new possibilities for solid–fluid phase equilibrium topography, heretofore not reported in the literature. To provide a better understanding of these computations, the authors have computed and mapped out the critical point loci, concurrently applying phase and system stability analysis. These new computations, which confirm the earlier solid–fluid computations, provide a detailed picture of how the solid–fluid topography for this particular series of model mixtures evolves as solvent–solute parametric differences increase.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-3812(00)00355-1</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-3812 |
ispartof | Fluid phase equilibria, 2000-05, Vol.171 (1), p.11-26 |
issn | 0378-3812 1879-0224 |
language | eng |
recordid | cdi_pascalfrancis_primary_1468487 |
source | Elsevier ScienceDirect Journals |
subjects | Binary mixtures Chemistry Criticality Exact sciences and technology General and physical chemistry Others (including liquid-liquid-vapor equilibria) Phase equilibria Solid–fluid equilibrium Stability van der Waals |
title | Patterns of solid–fluid phase equilibria: II. Interplay with fluid phase criticality and stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20of%20solid%E2%80%93fluid%20phase%20equilibria:%20II.%20Interplay%20with%20fluid%20phase%20criticality%20and%20stability&rft.jtitle=Fluid%20phase%20equilibria&rft.au=Labadie,%20J.A&rft.date=2000-05-28&rft.volume=171&rft.issue=1&rft.spage=11&rft.epage=26&rft.pages=11-26&rft.issn=0378-3812&rft.eissn=1879-0224&rft.coden=FPEQDT&rft_id=info:doi/10.1016/S0378-3812(00)00355-1&rft_dat=%3Celsevier_pasca%3ES0378381200003551%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378381200003551&rfr_iscdi=true |