Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems
This paper deals with a continuous space problem in which demand centers are independently served from a given number of independent, uncapacitated supply centers. Installation costs are assumed not to depend on either the actual location or actual throughput of the supply centers. Transportation co...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | |
container_start_page | 293 |
container_title | |
container_volume | 2457 |
creator | Ermis, Murat Ülengin, Füsun Hacioglu, Abdurrahman |
description | This paper deals with a continuous space problem in which demand centers are independently served from a given number of independent, uncapacitated supply centers. Installation costs are assumed not to depend on either the actual location or actual throughput of the supply centers. Transportation costs are considered to be proportional to the square Euclidean distance travelled and a mini-sum criteria is adopted. In order to solve this location problem, a new heuristic method, called Vibrational Genetic Algorithm (VGA), is applied. VGA assures efficient diversity in the population and consequently provides faster solution. We used VGA using vibrational mutation and for the mutational manner, a wave with random amplitude is introduced into population periodically, beginning with the initial step of the genetic process. This operation spreads out the population over the design space and increases exploration performance of the genetic process. This makes passing over local optimums for genetic algorithm easy. Since the problem is recognized as identical to certain cluster analysis and vector quantization problems, we also applied Kohonen maps which are Artificial Neural Networks (ANN) capable of extracting the main features of the input data through a selforganizing process based on local adaptation rules. The numerical results and comparison will be presented. |
doi_str_mv | 10.1007/3-540-36077-8_30 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14655433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072743_36_304</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-7b86ebdfe18da2d9f3f704d9845b22605f4b90880c92b8686853c1e92866a80c3</originalsourceid><addsrcrecordid>eNotkM9PwyAcxfFnrHN3j72Y6KET-NICx2XRabJEE92uhLZ0q3alQrfE_166CQe-eXzeyzcPoVuCJwRj_ghJynACGeY8EQrwCbqGoBwEcYoikhGSADB5dvwYjuTnKMKAaSI5g0sUSUipJJTDFRp7_zUwQLEUEKHlqs6d7mvb6iaem9b0dRFPm7V1db_ZxvertX6IK-viD9vs63Ydz2zb1-3O7nwY98YN2sIWh4j43dm8MVt_gy4q3Xgz_n9HaPn89Dl7SRZv89fZdJF0NBN9wnORmbysDBGlpqWsoOKYlVKwNKc0w2nFcomFwIWkAQ03hYIYSUWW6aDCCN0dczvtC91UTrdF7VXn6q12v4qwLE0ZQOAmR853w8LGqdzab68IVkPLClSoTh1KVUPLwQD_wc7-7IzvlRkchWl7p5tio7veOB9ITkPFwRlGBn-4vXnR</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072743_36_304</pqid></control><display><type>book_chapter</type><title>Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems</title><source>Springer Books</source><creator>Ermis, Murat ; Ülengin, Füsun ; Hacioglu, Abdurrahman</creator><contributor>Yakhno, Tatyana</contributor><creatorcontrib>Ermis, Murat ; Ülengin, Füsun ; Hacioglu, Abdurrahman ; Yakhno, Tatyana</creatorcontrib><description>This paper deals with a continuous space problem in which demand centers are independently served from a given number of independent, uncapacitated supply centers. Installation costs are assumed not to depend on either the actual location or actual throughput of the supply centers. Transportation costs are considered to be proportional to the square Euclidean distance travelled and a mini-sum criteria is adopted. In order to solve this location problem, a new heuristic method, called Vibrational Genetic Algorithm (VGA), is applied. VGA assures efficient diversity in the population and consequently provides faster solution. We used VGA using vibrational mutation and for the mutational manner, a wave with random amplitude is introduced into population periodically, beginning with the initial step of the genetic process. This operation spreads out the population over the design space and increases exploration performance of the genetic process. This makes passing over local optimums for genetic algorithm easy. Since the problem is recognized as identical to certain cluster analysis and vector quantization problems, we also applied Kohonen maps which are Artificial Neural Networks (ANN) capable of extracting the main features of the input data through a selforganizing process based on local adaptation rules. The numerical results and comparison will be presented.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540000097</identifier><identifier>ISBN: 9783540000099</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540360778</identifier><identifier>EISBN: 9783540360773</identifier><identifier>DOI: 10.1007/3-540-36077-8_30</identifier><identifier>OCLC: 935291273</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Demand Node ; Exact sciences and technology ; Genetic Algorithm ; Genetic Process ; Learning and adaptive systems ; Location Problem ; Mathematical programming ; Operational research and scientific management ; Operational Research Society ; Operational research. Management science</subject><ispartof>Advances in Information Systems, 2002, Vol.2457, p.293-302</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072743-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-36077-8_30$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-36077-8_30$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14655433$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yakhno, Tatyana</contributor><creatorcontrib>Ermis, Murat</creatorcontrib><creatorcontrib>Ülengin, Füsun</creatorcontrib><creatorcontrib>Hacioglu, Abdurrahman</creatorcontrib><title>Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems</title><title>Advances in Information Systems</title><description>This paper deals with a continuous space problem in which demand centers are independently served from a given number of independent, uncapacitated supply centers. Installation costs are assumed not to depend on either the actual location or actual throughput of the supply centers. Transportation costs are considered to be proportional to the square Euclidean distance travelled and a mini-sum criteria is adopted. In order to solve this location problem, a new heuristic method, called Vibrational Genetic Algorithm (VGA), is applied. VGA assures efficient diversity in the population and consequently provides faster solution. We used VGA using vibrational mutation and for the mutational manner, a wave with random amplitude is introduced into population periodically, beginning with the initial step of the genetic process. This operation spreads out the population over the design space and increases exploration performance of the genetic process. This makes passing over local optimums for genetic algorithm easy. Since the problem is recognized as identical to certain cluster analysis and vector quantization problems, we also applied Kohonen maps which are Artificial Neural Networks (ANN) capable of extracting the main features of the input data through a selforganizing process based on local adaptation rules. The numerical results and comparison will be presented.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Demand Node</subject><subject>Exact sciences and technology</subject><subject>Genetic Algorithm</subject><subject>Genetic Process</subject><subject>Learning and adaptive systems</subject><subject>Location Problem</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational Research Society</subject><subject>Operational research. Management science</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540000097</isbn><isbn>9783540000099</isbn><isbn>3540360778</isbn><isbn>9783540360773</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkM9PwyAcxfFnrHN3j72Y6KET-NICx2XRabJEE92uhLZ0q3alQrfE_166CQe-eXzeyzcPoVuCJwRj_ghJynACGeY8EQrwCbqGoBwEcYoikhGSADB5dvwYjuTnKMKAaSI5g0sUSUipJJTDFRp7_zUwQLEUEKHlqs6d7mvb6iaem9b0dRFPm7V1db_ZxvertX6IK-viD9vs63Ydz2zb1-3O7nwY98YN2sIWh4j43dm8MVt_gy4q3Xgz_n9HaPn89Dl7SRZv89fZdJF0NBN9wnORmbysDBGlpqWsoOKYlVKwNKc0w2nFcomFwIWkAQ03hYIYSUWW6aDCCN0dczvtC91UTrdF7VXn6q12v4qwLE0ZQOAmR853w8LGqdzab68IVkPLClSoTh1KVUPLwQD_wc7-7IzvlRkchWl7p5tio7veOB9ITkPFwRlGBn-4vXnR</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Ermis, Murat</creator><creator>Ülengin, Füsun</creator><creator>Hacioglu, Abdurrahman</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems</title><author>Ermis, Murat ; Ülengin, Füsun ; Hacioglu, Abdurrahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-7b86ebdfe18da2d9f3f704d9845b22605f4b90880c92b8686853c1e92866a80c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Demand Node</topic><topic>Exact sciences and technology</topic><topic>Genetic Algorithm</topic><topic>Genetic Process</topic><topic>Learning and adaptive systems</topic><topic>Location Problem</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational Research Society</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ermis, Murat</creatorcontrib><creatorcontrib>Ülengin, Füsun</creatorcontrib><creatorcontrib>Hacioglu, Abdurrahman</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ermis, Murat</au><au>Ülengin, Füsun</au><au>Hacioglu, Abdurrahman</au><au>Yakhno, Tatyana</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems</atitle><btitle>Advances in Information Systems</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2457</volume><spage>293</spage><epage>302</epage><pages>293-302</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540000097</isbn><isbn>9783540000099</isbn><eisbn>3540360778</eisbn><eisbn>9783540360773</eisbn><abstract>This paper deals with a continuous space problem in which demand centers are independently served from a given number of independent, uncapacitated supply centers. Installation costs are assumed not to depend on either the actual location or actual throughput of the supply centers. Transportation costs are considered to be proportional to the square Euclidean distance travelled and a mini-sum criteria is adopted. In order to solve this location problem, a new heuristic method, called Vibrational Genetic Algorithm (VGA), is applied. VGA assures efficient diversity in the population and consequently provides faster solution. We used VGA using vibrational mutation and for the mutational manner, a wave with random amplitude is introduced into population periodically, beginning with the initial step of the genetic process. This operation spreads out the population over the design space and increases exploration performance of the genetic process. This makes passing over local optimums for genetic algorithm easy. Since the problem is recognized as identical to certain cluster analysis and vector quantization problems, we also applied Kohonen maps which are Artificial Neural Networks (ANN) capable of extracting the main features of the input data through a selforganizing process based on local adaptation rules. The numerical results and comparison will be presented.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-36077-8_30</doi><oclcid>935291273</oclcid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Information Systems, 2002, Vol.2457, p.293-302 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14655433 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Demand Node Exact sciences and technology Genetic Algorithm Genetic Process Learning and adaptive systems Location Problem Mathematical programming Operational research and scientific management Operational Research Society Operational research. Management science |
title | Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Vibrational%20Genetic%20Algorithm%20(Vga)%20for%20Solving%20Continuous%20Covering%20Location%20Problems&rft.btitle=Advances%20in%20Information%20Systems&rft.au=Ermis,%20Murat&rft.date=2002&rft.volume=2457&rft.spage=293&rft.epage=302&rft.pages=293-302&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540000097&rft.isbn_list=9783540000099&rft_id=info:doi/10.1007/3-540-36077-8_30&rft_dat=%3Cproquest_pasca%3EEBC3072743_36_304%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540360778&rft.eisbn_list=9783540360773&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072743_36_304&rft_id=info:pmid/&rfr_iscdi=true |