Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems

This paper deals with a continuous space problem in which demand centers are independently served from a given number of independent, uncapacitated supply centers. Installation costs are assumed not to depend on either the actual location or actual throughput of the supply centers. Transportation co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ermis, Murat, Ülengin, Füsun, Hacioglu, Abdurrahman
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 302
container_issue
container_start_page 293
container_title
container_volume 2457
creator Ermis, Murat
Ülengin, Füsun
Hacioglu, Abdurrahman
description This paper deals with a continuous space problem in which demand centers are independently served from a given number of independent, uncapacitated supply centers. Installation costs are assumed not to depend on either the actual location or actual throughput of the supply centers. Transportation costs are considered to be proportional to the square Euclidean distance travelled and a mini-sum criteria is adopted. In order to solve this location problem, a new heuristic method, called Vibrational Genetic Algorithm (VGA), is applied. VGA assures efficient diversity in the population and consequently provides faster solution. We used VGA using vibrational mutation and for the mutational manner, a wave with random amplitude is introduced into population periodically, beginning with the initial step of the genetic process. This operation spreads out the population over the design space and increases exploration performance of the genetic process. This makes passing over local optimums for genetic algorithm easy. Since the problem is recognized as identical to certain cluster analysis and vector quantization problems, we also applied Kohonen maps which are Artificial Neural Networks (ANN) capable of extracting the main features of the input data through a selforganizing process based on local adaptation rules. The numerical results and comparison will be presented.
doi_str_mv 10.1007/3-540-36077-8_30
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14655433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072743_36_304</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-7b86ebdfe18da2d9f3f704d9845b22605f4b90880c92b8686853c1e92866a80c3</originalsourceid><addsrcrecordid>eNotkM9PwyAcxfFnrHN3j72Y6KET-NICx2XRabJEE92uhLZ0q3alQrfE_166CQe-eXzeyzcPoVuCJwRj_ghJynACGeY8EQrwCbqGoBwEcYoikhGSADB5dvwYjuTnKMKAaSI5g0sUSUipJJTDFRp7_zUwQLEUEKHlqs6d7mvb6iaem9b0dRFPm7V1db_ZxvertX6IK-viD9vs63Ydz2zb1-3O7nwY98YN2sIWh4j43dm8MVt_gy4q3Xgz_n9HaPn89Dl7SRZv89fZdJF0NBN9wnORmbysDBGlpqWsoOKYlVKwNKc0w2nFcomFwIWkAQ03hYIYSUWW6aDCCN0dczvtC91UTrdF7VXn6q12v4qwLE0ZQOAmR853w8LGqdzab68IVkPLClSoTh1KVUPLwQD_wc7-7IzvlRkchWl7p5tio7veOB9ITkPFwRlGBn-4vXnR</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072743_36_304</pqid></control><display><type>book_chapter</type><title>Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems</title><source>Springer Books</source><creator>Ermis, Murat ; Ülengin, Füsun ; Hacioglu, Abdurrahman</creator><contributor>Yakhno, Tatyana</contributor><creatorcontrib>Ermis, Murat ; Ülengin, Füsun ; Hacioglu, Abdurrahman ; Yakhno, Tatyana</creatorcontrib><description>This paper deals with a continuous space problem in which demand centers are independently served from a given number of independent, uncapacitated supply centers. Installation costs are assumed not to depend on either the actual location or actual throughput of the supply centers. Transportation costs are considered to be proportional to the square Euclidean distance travelled and a mini-sum criteria is adopted. In order to solve this location problem, a new heuristic method, called Vibrational Genetic Algorithm (VGA), is applied. VGA assures efficient diversity in the population and consequently provides faster solution. We used VGA using vibrational mutation and for the mutational manner, a wave with random amplitude is introduced into population periodically, beginning with the initial step of the genetic process. This operation spreads out the population over the design space and increases exploration performance of the genetic process. This makes passing over local optimums for genetic algorithm easy. Since the problem is recognized as identical to certain cluster analysis and vector quantization problems, we also applied Kohonen maps which are Artificial Neural Networks (ANN) capable of extracting the main features of the input data through a selforganizing process based on local adaptation rules. The numerical results and comparison will be presented.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540000097</identifier><identifier>ISBN: 9783540000099</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540360778</identifier><identifier>EISBN: 9783540360773</identifier><identifier>DOI: 10.1007/3-540-36077-8_30</identifier><identifier>OCLC: 935291273</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Demand Node ; Exact sciences and technology ; Genetic Algorithm ; Genetic Process ; Learning and adaptive systems ; Location Problem ; Mathematical programming ; Operational research and scientific management ; Operational Research Society ; Operational research. Management science</subject><ispartof>Advances in Information Systems, 2002, Vol.2457, p.293-302</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072743-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-36077-8_30$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-36077-8_30$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14655433$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yakhno, Tatyana</contributor><creatorcontrib>Ermis, Murat</creatorcontrib><creatorcontrib>Ülengin, Füsun</creatorcontrib><creatorcontrib>Hacioglu, Abdurrahman</creatorcontrib><title>Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems</title><title>Advances in Information Systems</title><description>This paper deals with a continuous space problem in which demand centers are independently served from a given number of independent, uncapacitated supply centers. Installation costs are assumed not to depend on either the actual location or actual throughput of the supply centers. Transportation costs are considered to be proportional to the square Euclidean distance travelled and a mini-sum criteria is adopted. In order to solve this location problem, a new heuristic method, called Vibrational Genetic Algorithm (VGA), is applied. VGA assures efficient diversity in the population and consequently provides faster solution. We used VGA using vibrational mutation and for the mutational manner, a wave with random amplitude is introduced into population periodically, beginning with the initial step of the genetic process. This operation spreads out the population over the design space and increases exploration performance of the genetic process. This makes passing over local optimums for genetic algorithm easy. Since the problem is recognized as identical to certain cluster analysis and vector quantization problems, we also applied Kohonen maps which are Artificial Neural Networks (ANN) capable of extracting the main features of the input data through a selforganizing process based on local adaptation rules. The numerical results and comparison will be presented.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Demand Node</subject><subject>Exact sciences and technology</subject><subject>Genetic Algorithm</subject><subject>Genetic Process</subject><subject>Learning and adaptive systems</subject><subject>Location Problem</subject><subject>Mathematical programming</subject><subject>Operational research and scientific management</subject><subject>Operational Research Society</subject><subject>Operational research. Management science</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540000097</isbn><isbn>9783540000099</isbn><isbn>3540360778</isbn><isbn>9783540360773</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkM9PwyAcxfFnrHN3j72Y6KET-NICx2XRabJEE92uhLZ0q3alQrfE_166CQe-eXzeyzcPoVuCJwRj_ghJynACGeY8EQrwCbqGoBwEcYoikhGSADB5dvwYjuTnKMKAaSI5g0sUSUipJJTDFRp7_zUwQLEUEKHlqs6d7mvb6iaem9b0dRFPm7V1db_ZxvertX6IK-viD9vs63Ydz2zb1-3O7nwY98YN2sIWh4j43dm8MVt_gy4q3Xgz_n9HaPn89Dl7SRZv89fZdJF0NBN9wnORmbysDBGlpqWsoOKYlVKwNKc0w2nFcomFwIWkAQ03hYIYSUWW6aDCCN0dczvtC91UTrdF7VXn6q12v4qwLE0ZQOAmR853w8LGqdzab68IVkPLClSoTh1KVUPLwQD_wc7-7IzvlRkchWl7p5tio7veOB9ITkPFwRlGBn-4vXnR</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Ermis, Murat</creator><creator>Ülengin, Füsun</creator><creator>Hacioglu, Abdurrahman</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems</title><author>Ermis, Murat ; Ülengin, Füsun ; Hacioglu, Abdurrahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-7b86ebdfe18da2d9f3f704d9845b22605f4b90880c92b8686853c1e92866a80c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Demand Node</topic><topic>Exact sciences and technology</topic><topic>Genetic Algorithm</topic><topic>Genetic Process</topic><topic>Learning and adaptive systems</topic><topic>Location Problem</topic><topic>Mathematical programming</topic><topic>Operational research and scientific management</topic><topic>Operational Research Society</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ermis, Murat</creatorcontrib><creatorcontrib>Ülengin, Füsun</creatorcontrib><creatorcontrib>Hacioglu, Abdurrahman</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ermis, Murat</au><au>Ülengin, Füsun</au><au>Hacioglu, Abdurrahman</au><au>Yakhno, Tatyana</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems</atitle><btitle>Advances in Information Systems</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2457</volume><spage>293</spage><epage>302</epage><pages>293-302</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540000097</isbn><isbn>9783540000099</isbn><eisbn>3540360778</eisbn><eisbn>9783540360773</eisbn><abstract>This paper deals with a continuous space problem in which demand centers are independently served from a given number of independent, uncapacitated supply centers. Installation costs are assumed not to depend on either the actual location or actual throughput of the supply centers. Transportation costs are considered to be proportional to the square Euclidean distance travelled and a mini-sum criteria is adopted. In order to solve this location problem, a new heuristic method, called Vibrational Genetic Algorithm (VGA), is applied. VGA assures efficient diversity in the population and consequently provides faster solution. We used VGA using vibrational mutation and for the mutational manner, a wave with random amplitude is introduced into population periodically, beginning with the initial step of the genetic process. This operation spreads out the population over the design space and increases exploration performance of the genetic process. This makes passing over local optimums for genetic algorithm easy. Since the problem is recognized as identical to certain cluster analysis and vector quantization problems, we also applied Kohonen maps which are Artificial Neural Networks (ANN) capable of extracting the main features of the input data through a selforganizing process based on local adaptation rules. The numerical results and comparison will be presented.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-36077-8_30</doi><oclcid>935291273</oclcid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Information Systems, 2002, Vol.2457, p.293-302
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14655433
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Demand Node
Exact sciences and technology
Genetic Algorithm
Genetic Process
Learning and adaptive systems
Location Problem
Mathematical programming
Operational research and scientific management
Operational Research Society
Operational research. Management science
title Vibrational Genetic Algorithm (Vga) for Solving Continuous Covering Location Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Vibrational%20Genetic%20Algorithm%20(Vga)%20for%20Solving%20Continuous%20Covering%20Location%20Problems&rft.btitle=Advances%20in%20Information%20Systems&rft.au=Ermis,%20Murat&rft.date=2002&rft.volume=2457&rft.spage=293&rft.epage=302&rft.pages=293-302&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540000097&rft.isbn_list=9783540000099&rft_id=info:doi/10.1007/3-540-36077-8_30&rft_dat=%3Cproquest_pasca%3EEBC3072743_36_304%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540360778&rft.eisbn_list=9783540360773&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072743_36_304&rft_id=info:pmid/&rfr_iscdi=true