Type-Theoretic Functional Semantics

We describe the operational and denotational semantics of a small imperative language in type theory with inductive and recursive definitions. The operational semantics is given by natural inference rules, implemented as an inductive relation. The realization of the denotational semantics is more de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bertot, Yves, Capretta, Venanzio, Barman, Kuntal Das
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue
container_start_page 83
container_title
container_volume 2410
creator Bertot, Yves
Capretta, Venanzio
Barman, Kuntal Das
description We describe the operational and denotational semantics of a small imperative language in type theory with inductive and recursive definitions. The operational semantics is given by natural inference rules, implemented as an inductive relation. The realization of the denotational semantics is more delicate: The nature of the language imposes a few difficulties on us. First, the language is Turing-complete, and therefore the interpretation function we consider is necessarily partial. Second, the language contains strict sequential operators, and therefore the function necessarily exhibits nested recursion. Our solution combines and extends recent work by the authors and others on the treatment of general recursive functions and partial and nested recursive functions. The first new result is a technique to encode the approach of Bove and Capretta for partial and nested recursive functions in type theories that do not provide simultaneous induction-recursion. A second result is a clear understanding of the characterization of the definition domain for general recursive functions, a key aspect in the approach by iteration of Balaa and Bertot. In this respect, the work on operational semantics is a meaningful example, but the applicability of the technique should extend to other circumstances where complex recursive functions need to be described formally.
doi_str_mv 10.1007/3-540-45685-6_7
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14635994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071645_13_93</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2227-5274bb690f3d1083ff7f670e584cd134f8a0dce1f72bc71a57ec88b05b01fb053</originalsourceid><addsrcrecordid>eNpFkL1PwzAUxM2niEpn1kqI0fCc588RVRSQKjFQZstxbRpokxCnQ_97TFuJt5x0d--GHyE3DO4ZgHpAKjhQLqQWVFp1QsZGacze3tKnpGCSMYrIzdl_xgENnJMCEEpqFMdLUhihRVkqIa_IOKUvyIelYlIU5Hax6wJdrELbh6H2k9m28UPdNm49eQ8b12QvXZOL6NYpjI86Ih-zp8X0hc7fnl-nj3PalXmdilLxqpIGIi4ZaIxRRakgCM39kiGP2sHSBxZVWXnFnFDBa12BqIDFLDgid4fdziXv1rF3ja-T7fp64_qdZVyiMIbnHj30Uo6az9Dbqm2_k2Vg_8BZtBmE3VOyGVzul8fdvv3ZhjTY8PfgQzP0bu1XrhtCnyxCRsKFZWgN4i85_Gi-</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071645_13_93</pqid></control><display><type>book_chapter</type><title>Type-Theoretic Functional Semantics</title><source>Springer Books</source><creator>Bertot, Yves ; Capretta, Venanzio ; Barman, Kuntal Das</creator><contributor>Carreno, Victor A ; Tahar, Sofiene ; Munoz, Cesar A ; Carreño, Victor A. ; Tahar, Sofiène ; Muñoz, César A.</contributor><creatorcontrib>Bertot, Yves ; Capretta, Venanzio ; Barman, Kuntal Das ; Carreno, Victor A ; Tahar, Sofiene ; Munoz, Cesar A ; Carreño, Victor A. ; Tahar, Sofiène ; Muñoz, César A.</creatorcontrib><description>We describe the operational and denotational semantics of a small imperative language in type theory with inductive and recursive definitions. The operational semantics is given by natural inference rules, implemented as an inductive relation. The realization of the denotational semantics is more delicate: The nature of the language imposes a few difficulties on us. First, the language is Turing-complete, and therefore the interpretation function we consider is necessarily partial. Second, the language contains strict sequential operators, and therefore the function necessarily exhibits nested recursion. Our solution combines and extends recent work by the authors and others on the treatment of general recursive functions and partial and nested recursive functions. The first new result is a technique to encode the approach of Bove and Capretta for partial and nested recursive functions in type theories that do not provide simultaneous induction-recursion. A second result is a clear understanding of the characterization of the definition domain for general recursive functions, a key aspect in the approach by iteration of Balaa and Bertot. In this respect, the work on operational semantics is a meaningful example, but the applicability of the technique should extend to other circumstances where complex recursive functions need to be described formally.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540440390</identifier><identifier>ISBN: 3540440399</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540456858</identifier><identifier>EISBN: 3540456856</identifier><identifier>DOI: 10.1007/3-540-45685-6_7</identifier><identifier>OCLC: 958522756</identifier><identifier>LCCallNum: QA76.9.S88</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Language theory and syntactical analysis ; Memory Location ; Operational Semantic ; Partial Function ; Recursive Function ; Theoretical computing ; Type Theory</subject><ispartof>Lecture notes in computer science, 2002, Vol.2410, p.83-97</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071645-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45685-6_7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45685-6_7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14635994$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Carreno, Victor A</contributor><contributor>Tahar, Sofiene</contributor><contributor>Munoz, Cesar A</contributor><contributor>Carreño, Victor A.</contributor><contributor>Tahar, Sofiène</contributor><contributor>Muñoz, César A.</contributor><creatorcontrib>Bertot, Yves</creatorcontrib><creatorcontrib>Capretta, Venanzio</creatorcontrib><creatorcontrib>Barman, Kuntal Das</creatorcontrib><title>Type-Theoretic Functional Semantics</title><title>Lecture notes in computer science</title><description>We describe the operational and denotational semantics of a small imperative language in type theory with inductive and recursive definitions. The operational semantics is given by natural inference rules, implemented as an inductive relation. The realization of the denotational semantics is more delicate: The nature of the language imposes a few difficulties on us. First, the language is Turing-complete, and therefore the interpretation function we consider is necessarily partial. Second, the language contains strict sequential operators, and therefore the function necessarily exhibits nested recursion. Our solution combines and extends recent work by the authors and others on the treatment of general recursive functions and partial and nested recursive functions. The first new result is a technique to encode the approach of Bove and Capretta for partial and nested recursive functions in type theories that do not provide simultaneous induction-recursion. A second result is a clear understanding of the characterization of the definition domain for general recursive functions, a key aspect in the approach by iteration of Balaa and Bertot. In this respect, the work on operational semantics is a meaningful example, but the applicability of the technique should extend to other circumstances where complex recursive functions need to be described formally.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Language theory and syntactical analysis</subject><subject>Memory Location</subject><subject>Operational Semantic</subject><subject>Partial Function</subject><subject>Recursive Function</subject><subject>Theoretical computing</subject><subject>Type Theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540440390</isbn><isbn>3540440399</isbn><isbn>9783540456858</isbn><isbn>3540456856</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkL1PwzAUxM2niEpn1kqI0fCc588RVRSQKjFQZstxbRpokxCnQ_97TFuJt5x0d--GHyE3DO4ZgHpAKjhQLqQWVFp1QsZGacze3tKnpGCSMYrIzdl_xgENnJMCEEpqFMdLUhihRVkqIa_IOKUvyIelYlIU5Hax6wJdrELbh6H2k9m28UPdNm49eQ8b12QvXZOL6NYpjI86Ih-zp8X0hc7fnl-nj3PalXmdilLxqpIGIi4ZaIxRRakgCM39kiGP2sHSBxZVWXnFnFDBa12BqIDFLDgid4fdziXv1rF3ja-T7fp64_qdZVyiMIbnHj30Uo6az9Dbqm2_k2Vg_8BZtBmE3VOyGVzul8fdvv3ZhjTY8PfgQzP0bu1XrhtCnyxCRsKFZWgN4i85_Gi-</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Bertot, Yves</creator><creator>Capretta, Venanzio</creator><creator>Barman, Kuntal Das</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Type-Theoretic Functional Semantics</title><author>Bertot, Yves ; Capretta, Venanzio ; Barman, Kuntal Das</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2227-5274bb690f3d1083ff7f670e584cd134f8a0dce1f72bc71a57ec88b05b01fb053</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Language theory and syntactical analysis</topic><topic>Memory Location</topic><topic>Operational Semantic</topic><topic>Partial Function</topic><topic>Recursive Function</topic><topic>Theoretical computing</topic><topic>Type Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertot, Yves</creatorcontrib><creatorcontrib>Capretta, Venanzio</creatorcontrib><creatorcontrib>Barman, Kuntal Das</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertot, Yves</au><au>Capretta, Venanzio</au><au>Barman, Kuntal Das</au><au>Carreno, Victor A</au><au>Tahar, Sofiene</au><au>Munoz, Cesar A</au><au>Carreño, Victor A.</au><au>Tahar, Sofiène</au><au>Muñoz, César A.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Type-Theoretic Functional Semantics</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2410</volume><spage>83</spage><epage>97</epage><pages>83-97</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540440390</isbn><isbn>3540440399</isbn><eisbn>9783540456858</eisbn><eisbn>3540456856</eisbn><abstract>We describe the operational and denotational semantics of a small imperative language in type theory with inductive and recursive definitions. The operational semantics is given by natural inference rules, implemented as an inductive relation. The realization of the denotational semantics is more delicate: The nature of the language imposes a few difficulties on us. First, the language is Turing-complete, and therefore the interpretation function we consider is necessarily partial. Second, the language contains strict sequential operators, and therefore the function necessarily exhibits nested recursion. Our solution combines and extends recent work by the authors and others on the treatment of general recursive functions and partial and nested recursive functions. The first new result is a technique to encode the approach of Bove and Capretta for partial and nested recursive functions in type theories that do not provide simultaneous induction-recursion. A second result is a clear understanding of the characterization of the definition domain for general recursive functions, a key aspect in the approach by iteration of Balaa and Bertot. In this respect, the work on operational semantics is a meaningful example, but the applicability of the technique should extend to other circumstances where complex recursive functions need to be described formally.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45685-6_7</doi><oclcid>958522756</oclcid><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2002, Vol.2410, p.83-97
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14635994
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Language theory and syntactical analysis
Memory Location
Operational Semantic
Partial Function
Recursive Function
Theoretical computing
Type Theory
title Type-Theoretic Functional Semantics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Type-Theoretic%20Functional%20Semantics&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Bertot,%20Yves&rft.date=2002&rft.volume=2410&rft.spage=83&rft.epage=97&rft.pages=83-97&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540440390&rft.isbn_list=3540440399&rft_id=info:doi/10.1007/3-540-45685-6_7&rft_dat=%3Cproquest_pasca%3EEBC3071645_13_93%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540456858&rft.eisbn_list=3540456856&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071645_13_93&rft_id=info:pmid/&rfr_iscdi=true