Determining Hit Rate in Pattern Search
The problem of spurious apparent patterns arising by chance is a fundamental one for pattern detection. Classical approaches, based on adjustments such as the Bonferroni procedure, are arguably not appropriate in a data mining context. Instead, methods based on the false discovery rate - the proport...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | |
container_start_page | 36 |
container_title | |
container_volume | 2447 |
creator | Bolton, Richard J. Hand, David J. Adams, Niall M. |
description | The problem of spurious apparent patterns arising by chance is a fundamental one for pattern detection. Classical approaches, based on adjustments such as the Bonferroni procedure, are arguably not appropriate in a data mining context. Instead, methods based on the false discovery rate - the proportion of flagged patterns which do not represent an underlying reality - may be more relevant. We describe such procedures and illustrate their application on a marketing dataset. |
doi_str_mv | 10.1007/3-540-45728-3_4 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14574219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073158_10_47</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1814-e44c07d8c4d5851dbb09539a2e8973e09d4094be0fb09cb15f00e8b7dbefc2c3</originalsourceid><addsrcrecordid>eNotUMlOwzAQNasIpWeuucDNYHvG2D6ishSpEgh6txzHaQMlDXY48Pe4y1xmeW_eaB4hl5zdcMbULVCJjKJUQlOweEDOIQ-2PRySgt9xTgHQHO0B5KjxmBQMmKBGIZySwkgtBc9xRsYpfbIcIKRUUJDrhzCE-N12bbcop-1QvrshlG1XvrkhA135EVz0ywty0rhVCuN9HpH50-N8MqWz1-eXyf2M9lxzpAHRM1Vrj3U-yeuqYkaCcSJooyAwUyMzWAXWZMBXXDaMBV2pugqNFx5G5Gon27vk3aqJrvNtsn1sv138szy_jYKbzKM7XspQtwjRVuv1V7Kc2Y1pFmy2wm5NyjVmvtjrxvXPb0iDDZsFH7ohupVfuj7_miwwBVzqjQwq-Ae2l2fV</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073158_10_47</pqid></control><display><type>book_chapter</type><title>Determining Hit Rate in Pattern Search</title><source>Springer Books</source><creator>Bolton, Richard J. ; Hand, David J. ; Adams, Niall M.</creator><contributor>Adams, Niall, M ; Hand, David J ; Bolton, Richard J</contributor><creatorcontrib>Bolton, Richard J. ; Hand, David J. ; Adams, Niall M. ; Adams, Niall, M ; Hand, David J ; Bolton, Richard J</creatorcontrib><description>The problem of spurious apparent patterns arising by chance is a fundamental one for pattern detection. Classical approaches, based on adjustments such as the Bonferroni procedure, are arguably not appropriate in a data mining context. Instead, methods based on the false discovery rate - the proportion of flagged patterns which do not represent an underlying reality - may be more relevant. We describe such procedures and illustrate their application on a marketing dataset.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540441484</identifier><identifier>ISBN: 9783540441489</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540457283</identifier><identifier>EISBN: 9783540457282</identifier><identifier>DOI: 10.1007/3-540-45728-3_4</identifier><identifier>OCLC: 958521111</identifier><identifier>LCCallNum: QA76.9.D3</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Data Mining ; Exact sciences and technology ; False Discovery Rate ; Information systems. Data bases ; Memory organisation. Data processing ; Pairwise Association ; Pattern Detection ; Real Structure ; Software</subject><ispartof>Lecture notes in computer science, 2002, Vol.2447, p.36-48</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073158-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45728-3_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45728-3_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14574219$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Adams, Niall, M</contributor><contributor>Hand, David J</contributor><contributor>Bolton, Richard J</contributor><creatorcontrib>Bolton, Richard J.</creatorcontrib><creatorcontrib>Hand, David J.</creatorcontrib><creatorcontrib>Adams, Niall M.</creatorcontrib><title>Determining Hit Rate in Pattern Search</title><title>Lecture notes in computer science</title><description>The problem of spurious apparent patterns arising by chance is a fundamental one for pattern detection. Classical approaches, based on adjustments such as the Bonferroni procedure, are arguably not appropriate in a data mining context. Instead, methods based on the false discovery rate - the proportion of flagged patterns which do not represent an underlying reality - may be more relevant. We describe such procedures and illustrate their application on a marketing dataset.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Data Mining</subject><subject>Exact sciences and technology</subject><subject>False Discovery Rate</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Pairwise Association</subject><subject>Pattern Detection</subject><subject>Real Structure</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540441484</isbn><isbn>9783540441489</isbn><isbn>3540457283</isbn><isbn>9783540457282</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUMlOwzAQNasIpWeuucDNYHvG2D6ishSpEgh6txzHaQMlDXY48Pe4y1xmeW_eaB4hl5zdcMbULVCJjKJUQlOweEDOIQ-2PRySgt9xTgHQHO0B5KjxmBQMmKBGIZySwkgtBc9xRsYpfbIcIKRUUJDrhzCE-N12bbcop-1QvrshlG1XvrkhA135EVz0ywty0rhVCuN9HpH50-N8MqWz1-eXyf2M9lxzpAHRM1Vrj3U-yeuqYkaCcSJooyAwUyMzWAXWZMBXXDaMBV2pugqNFx5G5Gon27vk3aqJrvNtsn1sv138szy_jYKbzKM7XspQtwjRVuv1V7Kc2Y1pFmy2wm5NyjVmvtjrxvXPb0iDDZsFH7ohupVfuj7_miwwBVzqjQwq-Ae2l2fV</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Bolton, Richard J.</creator><creator>Hand, David J.</creator><creator>Adams, Niall M.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Determining Hit Rate in Pattern Search</title><author>Bolton, Richard J. ; Hand, David J. ; Adams, Niall M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1814-e44c07d8c4d5851dbb09539a2e8973e09d4094be0fb09cb15f00e8b7dbefc2c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Data Mining</topic><topic>Exact sciences and technology</topic><topic>False Discovery Rate</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Pairwise Association</topic><topic>Pattern Detection</topic><topic>Real Structure</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolton, Richard J.</creatorcontrib><creatorcontrib>Hand, David J.</creatorcontrib><creatorcontrib>Adams, Niall M.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolton, Richard J.</au><au>Hand, David J.</au><au>Adams, Niall M.</au><au>Adams, Niall, M</au><au>Hand, David J</au><au>Bolton, Richard J</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Determining Hit Rate in Pattern Search</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2447</volume><spage>36</spage><epage>48</epage><pages>36-48</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540441484</isbn><isbn>9783540441489</isbn><eisbn>3540457283</eisbn><eisbn>9783540457282</eisbn><abstract>The problem of spurious apparent patterns arising by chance is a fundamental one for pattern detection. Classical approaches, based on adjustments such as the Bonferroni procedure, are arguably not appropriate in a data mining context. Instead, methods based on the false discovery rate - the proportion of flagged patterns which do not represent an underlying reality - may be more relevant. We describe such procedures and illustrate their application on a marketing dataset.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45728-3_4</doi><oclcid>958521111</oclcid><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2002, Vol.2447, p.36-48 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14574219 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Data Mining Exact sciences and technology False Discovery Rate Information systems. Data bases Memory organisation. Data processing Pairwise Association Pattern Detection Real Structure Software |
title | Determining Hit Rate in Pattern Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A47%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Determining%20Hit%20Rate%20in%20Pattern%20Search&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Bolton,%20Richard%20J.&rft.date=2002&rft.volume=2447&rft.spage=36&rft.epage=48&rft.pages=36-48&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540441484&rft.isbn_list=9783540441489&rft_id=info:doi/10.1007/3-540-45728-3_4&rft_dat=%3Cproquest_pasca%3EEBC3073158_10_47%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540457283&rft.eisbn_list=9783540457282&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073158_10_47&rft_id=info:pmid/&rfr_iscdi=true |