Determining Hit Rate in Pattern Search

The problem of spurious apparent patterns arising by chance is a fundamental one for pattern detection. Classical approaches, based on adjustments such as the Bonferroni procedure, are arguably not appropriate in a data mining context. Instead, methods based on the false discovery rate - the proport...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bolton, Richard J., Hand, David J., Adams, Niall M.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 36
container_title
container_volume 2447
creator Bolton, Richard J.
Hand, David J.
Adams, Niall M.
description The problem of spurious apparent patterns arising by chance is a fundamental one for pattern detection. Classical approaches, based on adjustments such as the Bonferroni procedure, are arguably not appropriate in a data mining context. Instead, methods based on the false discovery rate - the proportion of flagged patterns which do not represent an underlying reality - may be more relevant. We describe such procedures and illustrate their application on a marketing dataset.
doi_str_mv 10.1007/3-540-45728-3_4
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14574219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073158_10_47</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1814-e44c07d8c4d5851dbb09539a2e8973e09d4094be0fb09cb15f00e8b7dbefc2c3</originalsourceid><addsrcrecordid>eNotUMlOwzAQNasIpWeuucDNYHvG2D6ishSpEgh6txzHaQMlDXY48Pe4y1xmeW_eaB4hl5zdcMbULVCJjKJUQlOweEDOIQ-2PRySgt9xTgHQHO0B5KjxmBQMmKBGIZySwkgtBc9xRsYpfbIcIKRUUJDrhzCE-N12bbcop-1QvrshlG1XvrkhA135EVz0ywty0rhVCuN9HpH50-N8MqWz1-eXyf2M9lxzpAHRM1Vrj3U-yeuqYkaCcSJooyAwUyMzWAXWZMBXXDaMBV2pugqNFx5G5Gon27vk3aqJrvNtsn1sv138szy_jYKbzKM7XspQtwjRVuv1V7Kc2Y1pFmy2wm5NyjVmvtjrxvXPb0iDDZsFH7ohupVfuj7_miwwBVzqjQwq-Ae2l2fV</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073158_10_47</pqid></control><display><type>book_chapter</type><title>Determining Hit Rate in Pattern Search</title><source>Springer Books</source><creator>Bolton, Richard J. ; Hand, David J. ; Adams, Niall M.</creator><contributor>Adams, Niall, M ; Hand, David J ; Bolton, Richard J</contributor><creatorcontrib>Bolton, Richard J. ; Hand, David J. ; Adams, Niall M. ; Adams, Niall, M ; Hand, David J ; Bolton, Richard J</creatorcontrib><description>The problem of spurious apparent patterns arising by chance is a fundamental one for pattern detection. Classical approaches, based on adjustments such as the Bonferroni procedure, are arguably not appropriate in a data mining context. Instead, methods based on the false discovery rate - the proportion of flagged patterns which do not represent an underlying reality - may be more relevant. We describe such procedures and illustrate their application on a marketing dataset.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540441484</identifier><identifier>ISBN: 9783540441489</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540457283</identifier><identifier>EISBN: 9783540457282</identifier><identifier>DOI: 10.1007/3-540-45728-3_4</identifier><identifier>OCLC: 958521111</identifier><identifier>LCCallNum: QA76.9.D3</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Data Mining ; Exact sciences and technology ; False Discovery Rate ; Information systems. Data bases ; Memory organisation. Data processing ; Pairwise Association ; Pattern Detection ; Real Structure ; Software</subject><ispartof>Lecture notes in computer science, 2002, Vol.2447, p.36-48</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073158-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45728-3_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45728-3_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14574219$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Adams, Niall, M</contributor><contributor>Hand, David J</contributor><contributor>Bolton, Richard J</contributor><creatorcontrib>Bolton, Richard J.</creatorcontrib><creatorcontrib>Hand, David J.</creatorcontrib><creatorcontrib>Adams, Niall M.</creatorcontrib><title>Determining Hit Rate in Pattern Search</title><title>Lecture notes in computer science</title><description>The problem of spurious apparent patterns arising by chance is a fundamental one for pattern detection. Classical approaches, based on adjustments such as the Bonferroni procedure, are arguably not appropriate in a data mining context. Instead, methods based on the false discovery rate - the proportion of flagged patterns which do not represent an underlying reality - may be more relevant. We describe such procedures and illustrate their application on a marketing dataset.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Data Mining</subject><subject>Exact sciences and technology</subject><subject>False Discovery Rate</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Pairwise Association</subject><subject>Pattern Detection</subject><subject>Real Structure</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540441484</isbn><isbn>9783540441489</isbn><isbn>3540457283</isbn><isbn>9783540457282</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUMlOwzAQNasIpWeuucDNYHvG2D6ishSpEgh6txzHaQMlDXY48Pe4y1xmeW_eaB4hl5zdcMbULVCJjKJUQlOweEDOIQ-2PRySgt9xTgHQHO0B5KjxmBQMmKBGIZySwkgtBc9xRsYpfbIcIKRUUJDrhzCE-N12bbcop-1QvrshlG1XvrkhA135EVz0ywty0rhVCuN9HpH50-N8MqWz1-eXyf2M9lxzpAHRM1Vrj3U-yeuqYkaCcSJooyAwUyMzWAXWZMBXXDaMBV2pugqNFx5G5Gon27vk3aqJrvNtsn1sv138szy_jYKbzKM7XspQtwjRVuv1V7Kc2Y1pFmy2wm5NyjVmvtjrxvXPb0iDDZsFH7ohupVfuj7_miwwBVzqjQwq-Ae2l2fV</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Bolton, Richard J.</creator><creator>Hand, David J.</creator><creator>Adams, Niall M.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Determining Hit Rate in Pattern Search</title><author>Bolton, Richard J. ; Hand, David J. ; Adams, Niall M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1814-e44c07d8c4d5851dbb09539a2e8973e09d4094be0fb09cb15f00e8b7dbefc2c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Data Mining</topic><topic>Exact sciences and technology</topic><topic>False Discovery Rate</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Pairwise Association</topic><topic>Pattern Detection</topic><topic>Real Structure</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolton, Richard J.</creatorcontrib><creatorcontrib>Hand, David J.</creatorcontrib><creatorcontrib>Adams, Niall M.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolton, Richard J.</au><au>Hand, David J.</au><au>Adams, Niall M.</au><au>Adams, Niall, M</au><au>Hand, David J</au><au>Bolton, Richard J</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Determining Hit Rate in Pattern Search</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2447</volume><spage>36</spage><epage>48</epage><pages>36-48</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540441484</isbn><isbn>9783540441489</isbn><eisbn>3540457283</eisbn><eisbn>9783540457282</eisbn><abstract>The problem of spurious apparent patterns arising by chance is a fundamental one for pattern detection. Classical approaches, based on adjustments such as the Bonferroni procedure, are arguably not appropriate in a data mining context. Instead, methods based on the false discovery rate - the proportion of flagged patterns which do not represent an underlying reality - may be more relevant. We describe such procedures and illustrate their application on a marketing dataset.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45728-3_4</doi><oclcid>958521111</oclcid><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2002, Vol.2447, p.36-48
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14574219
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Data Mining
Exact sciences and technology
False Discovery Rate
Information systems. Data bases
Memory organisation. Data processing
Pairwise Association
Pattern Detection
Real Structure
Software
title Determining Hit Rate in Pattern Search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T08%3A47%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Determining%20Hit%20Rate%20in%20Pattern%20Search&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Bolton,%20Richard%20J.&rft.date=2002&rft.volume=2447&rft.spage=36&rft.epage=48&rft.pages=36-48&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540441484&rft.isbn_list=9783540441489&rft_id=info:doi/10.1007/3-540-45728-3_4&rft_dat=%3Cproquest_pasca%3EEBC3073158_10_47%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540457283&rft.eisbn_list=9783540457282&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073158_10_47&rft_id=info:pmid/&rfr_iscdi=true