Optimizing Quality of Service Using Fuzzy Control
The rapid growth of eCommerce increasingly means busi- ness revenues depend on providing good quality of service (QoS) for web site interactions. Traditionally, system administrators have been respon- sible for optimizing tuning parameters, a process that is time-consuming and skills-intensive, and...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | |
container_start_page | 42 |
container_title | |
container_volume | 2506 |
creator | Diao, Yixin Hellerstein, Joseph L. Parekh, Sujay |
description | The rapid growth of eCommerce increasingly means busi- ness revenues depend on providing good quality of service (QoS) for web site interactions. Traditionally, system administrators have been respon- sible for optimizing tuning parameters, a process that is time-consuming and skills-intensive, and therefore high cost. This paper describes an ap- proach to automating parameter tuning using a fuzzy controller that employs rules incorporating qualitative knowledge of the effect of tuning parameters. An example of such qualitative knowledge in the Apache web server is “MaxClients has a concave upward effect on response times.” Our studies using a real Apache web server suggest that such a scheme can improve performance without human intervention. Further, we show that the controller can automatically adapt to changes in workloads. |
doi_str_mv | 10.1007/3-540-36110-3_7 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14573765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072036_13_52</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-b0faea49de34c37d91aa24c37d7808b3cd24e4f5517fc0a8523a003b5dbf29143</originalsourceid><addsrcrecordid>eNo9UE1PwzAMDZ-iGjtz7YVjIImTpjmiiQES0oRg5yhN01Ho2pJ0SNuvJ90mfLCf_J4t-yF0Q8kdJUTeAxacYMgojVnLEzRVMofY27fkKUpoBBiAq7N_LkZO8nOUECAMK8nhEiUKBFNE0fwKTUP4GkXAeEazBNFFP9Trele3q_RtY5p62KZdlb47_1tbly7DSMw3u902nXXt4LvmGl1UpglueqwTtJw_fsye8evi6WX28Iot5HzABamMM1yVDrgFWSpqDNsjGQ8swJaMO14JQWVlickFAxPPKkRZVExRDhN0e9jbm2BNU3nT2jro3tdr47eaciFBZiLq8EEXItWunNdF130HTYkebdSgoy1671nEMurZca_vfjYuDNqNA9bF70xjP00_OB80EMmi05rGeQZ_MOZt7Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072036_13_52</pqid></control><display><type>book_chapter</type><title>Optimizing Quality of Service Using Fuzzy Control</title><source>Springer Books</source><creator>Diao, Yixin ; Hellerstein, Joseph L. ; Parekh, Sujay</creator><contributor>Babin, Gilbert ; Feridun, Metin ; Kropf, Peter ; Kropf, Peter ; Babin, Gilbert ; Feridun, Metin</contributor><creatorcontrib>Diao, Yixin ; Hellerstein, Joseph L. ; Parekh, Sujay ; Babin, Gilbert ; Feridun, Metin ; Kropf, Peter ; Kropf, Peter ; Babin, Gilbert ; Feridun, Metin</creatorcontrib><description>The rapid growth of eCommerce increasingly means busi- ness revenues depend on providing good quality of service (QoS) for web site interactions. Traditionally, system administrators have been respon- sible for optimizing tuning parameters, a process that is time-consuming and skills-intensive, and therefore high cost. This paper describes an ap- proach to automating parameter tuning using a fuzzy controller that employs rules incorporating qualitative knowledge of the effect of tuning parameters. An example of such qualitative knowledge in the Apache web server is “MaxClients has a concave upward effect on response times.” Our studies using a real Apache web server suggest that such a scheme can improve performance without human intervention. Further, we show that the controller can automatically adapt to changes in workloads.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540000808</identifier><identifier>ISBN: 3540000801</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540361107</identifier><identifier>EISBN: 3540361103</identifier><identifier>DOI: 10.1007/3-540-36110-3_7</identifier><identifier>OCLC: 935290918</identifier><identifier>LCCallNum: HF5548.32-.33</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Fuzzy Control ; Fuzzy Controller ; Fuzzy Rule ; Response Time ; Software ; Tuning Parameter</subject><ispartof>Lecture notes in computer science, 2002, Vol.2506, p.42-53</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-b0faea49de34c37d91aa24c37d7808b3cd24e4f5517fc0a8523a003b5dbf29143</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072036-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-36110-3_7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-36110-3_7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14573765$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Babin, Gilbert</contributor><contributor>Feridun, Metin</contributor><contributor>Kropf, Peter</contributor><contributor>Kropf, Peter</contributor><contributor>Babin, Gilbert</contributor><contributor>Feridun, Metin</contributor><creatorcontrib>Diao, Yixin</creatorcontrib><creatorcontrib>Hellerstein, Joseph L.</creatorcontrib><creatorcontrib>Parekh, Sujay</creatorcontrib><title>Optimizing Quality of Service Using Fuzzy Control</title><title>Lecture notes in computer science</title><description>The rapid growth of eCommerce increasingly means busi- ness revenues depend on providing good quality of service (QoS) for web site interactions. Traditionally, system administrators have been respon- sible for optimizing tuning parameters, a process that is time-consuming and skills-intensive, and therefore high cost. This paper describes an ap- proach to automating parameter tuning using a fuzzy controller that employs rules incorporating qualitative knowledge of the effect of tuning parameters. An example of such qualitative knowledge in the Apache web server is “MaxClients has a concave upward effect on response times.” Our studies using a real Apache web server suggest that such a scheme can improve performance without human intervention. Further, we show that the controller can automatically adapt to changes in workloads.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Control</subject><subject>Fuzzy Controller</subject><subject>Fuzzy Rule</subject><subject>Response Time</subject><subject>Software</subject><subject>Tuning Parameter</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540000808</isbn><isbn>3540000801</isbn><isbn>9783540361107</isbn><isbn>3540361103</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9UE1PwzAMDZ-iGjtz7YVjIImTpjmiiQES0oRg5yhN01Ho2pJ0SNuvJ90mfLCf_J4t-yF0Q8kdJUTeAxacYMgojVnLEzRVMofY27fkKUpoBBiAq7N_LkZO8nOUECAMK8nhEiUKBFNE0fwKTUP4GkXAeEazBNFFP9Trele3q_RtY5p62KZdlb47_1tbly7DSMw3u902nXXt4LvmGl1UpglueqwTtJw_fsye8evi6WX28Iot5HzABamMM1yVDrgFWSpqDNsjGQ8swJaMO14JQWVlickFAxPPKkRZVExRDhN0e9jbm2BNU3nT2jro3tdr47eaciFBZiLq8EEXItWunNdF130HTYkebdSgoy1671nEMurZca_vfjYuDNqNA9bF70xjP00_OB80EMmi05rGeQZ_MOZt7Q</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Diao, Yixin</creator><creator>Hellerstein, Joseph L.</creator><creator>Parekh, Sujay</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Optimizing Quality of Service Using Fuzzy Control</title><author>Diao, Yixin ; Hellerstein, Joseph L. ; Parekh, Sujay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-b0faea49de34c37d91aa24c37d7808b3cd24e4f5517fc0a8523a003b5dbf29143</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Control</topic><topic>Fuzzy Controller</topic><topic>Fuzzy Rule</topic><topic>Response Time</topic><topic>Software</topic><topic>Tuning Parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diao, Yixin</creatorcontrib><creatorcontrib>Hellerstein, Joseph L.</creatorcontrib><creatorcontrib>Parekh, Sujay</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diao, Yixin</au><au>Hellerstein, Joseph L.</au><au>Parekh, Sujay</au><au>Babin, Gilbert</au><au>Feridun, Metin</au><au>Kropf, Peter</au><au>Kropf, Peter</au><au>Babin, Gilbert</au><au>Feridun, Metin</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Optimizing Quality of Service Using Fuzzy Control</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2506</volume><spage>42</spage><epage>53</epage><pages>42-53</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540000808</isbn><isbn>3540000801</isbn><eisbn>9783540361107</eisbn><eisbn>3540361103</eisbn><abstract>The rapid growth of eCommerce increasingly means busi- ness revenues depend on providing good quality of service (QoS) for web site interactions. Traditionally, system administrators have been respon- sible for optimizing tuning parameters, a process that is time-consuming and skills-intensive, and therefore high cost. This paper describes an ap- proach to automating parameter tuning using a fuzzy controller that employs rules incorporating qualitative knowledge of the effect of tuning parameters. An example of such qualitative knowledge in the Apache web server is “MaxClients has a concave upward effect on response times.” Our studies using a real Apache web server suggest that such a scheme can improve performance without human intervention. Further, we show that the controller can automatically adapt to changes in workloads.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-36110-3_7</doi><oclcid>935290918</oclcid><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2002, Vol.2506, p.42-53 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14573765 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Computer systems and distributed systems. User interface Exact sciences and technology Fuzzy Control Fuzzy Controller Fuzzy Rule Response Time Software Tuning Parameter |
title | Optimizing Quality of Service Using Fuzzy Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Optimizing%20Quality%20of%20Service%20Using%20Fuzzy%20Control&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Diao,%20Yixin&rft.date=2002&rft.volume=2506&rft.spage=42&rft.epage=53&rft.pages=42-53&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540000808&rft.isbn_list=3540000801&rft_id=info:doi/10.1007/3-540-36110-3_7&rft_dat=%3Cproquest_pasca%3EEBC3072036_13_52%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540361107&rft.eisbn_list=3540361103&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072036_13_52&rft_id=info:pmid/&rfr_iscdi=true |