Optimizing Quality of Service Using Fuzzy Control

The rapid growth of eCommerce increasingly means busi- ness revenues depend on providing good quality of service (QoS) for web site interactions. Traditionally, system administrators have been respon- sible for optimizing tuning parameters, a process that is time-consuming and skills-intensive, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Diao, Yixin, Hellerstein, Joseph L., Parekh, Sujay
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue
container_start_page 42
container_title
container_volume 2506
creator Diao, Yixin
Hellerstein, Joseph L.
Parekh, Sujay
description The rapid growth of eCommerce increasingly means busi- ness revenues depend on providing good quality of service (QoS) for web site interactions. Traditionally, system administrators have been respon- sible for optimizing tuning parameters, a process that is time-consuming and skills-intensive, and therefore high cost. This paper describes an ap- proach to automating parameter tuning using a fuzzy controller that employs rules incorporating qualitative knowledge of the effect of tuning parameters. An example of such qualitative knowledge in the Apache web server is “MaxClients has a concave upward effect on response times.” Our studies using a real Apache web server suggest that such a scheme can improve performance without human intervention. Further, we show that the controller can automatically adapt to changes in workloads.
doi_str_mv 10.1007/3-540-36110-3_7
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14573765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072036_13_52</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-b0faea49de34c37d91aa24c37d7808b3cd24e4f5517fc0a8523a003b5dbf29143</originalsourceid><addsrcrecordid>eNo9UE1PwzAMDZ-iGjtz7YVjIImTpjmiiQES0oRg5yhN01Ho2pJ0SNuvJ90mfLCf_J4t-yF0Q8kdJUTeAxacYMgojVnLEzRVMofY27fkKUpoBBiAq7N_LkZO8nOUECAMK8nhEiUKBFNE0fwKTUP4GkXAeEazBNFFP9Trele3q_RtY5p62KZdlb47_1tbly7DSMw3u902nXXt4LvmGl1UpglueqwTtJw_fsye8evi6WX28Iot5HzABamMM1yVDrgFWSpqDNsjGQ8swJaMO14JQWVlickFAxPPKkRZVExRDhN0e9jbm2BNU3nT2jro3tdr47eaciFBZiLq8EEXItWunNdF130HTYkebdSgoy1671nEMurZca_vfjYuDNqNA9bF70xjP00_OB80EMmi05rGeQZ_MOZt7Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072036_13_52</pqid></control><display><type>book_chapter</type><title>Optimizing Quality of Service Using Fuzzy Control</title><source>Springer Books</source><creator>Diao, Yixin ; Hellerstein, Joseph L. ; Parekh, Sujay</creator><contributor>Babin, Gilbert ; Feridun, Metin ; Kropf, Peter ; Kropf, Peter ; Babin, Gilbert ; Feridun, Metin</contributor><creatorcontrib>Diao, Yixin ; Hellerstein, Joseph L. ; Parekh, Sujay ; Babin, Gilbert ; Feridun, Metin ; Kropf, Peter ; Kropf, Peter ; Babin, Gilbert ; Feridun, Metin</creatorcontrib><description>The rapid growth of eCommerce increasingly means busi- ness revenues depend on providing good quality of service (QoS) for web site interactions. Traditionally, system administrators have been respon- sible for optimizing tuning parameters, a process that is time-consuming and skills-intensive, and therefore high cost. This paper describes an ap- proach to automating parameter tuning using a fuzzy controller that employs rules incorporating qualitative knowledge of the effect of tuning parameters. An example of such qualitative knowledge in the Apache web server is “MaxClients has a concave upward effect on response times.” Our studies using a real Apache web server suggest that such a scheme can improve performance without human intervention. Further, we show that the controller can automatically adapt to changes in workloads.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540000808</identifier><identifier>ISBN: 3540000801</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540361107</identifier><identifier>EISBN: 3540361103</identifier><identifier>DOI: 10.1007/3-540-36110-3_7</identifier><identifier>OCLC: 935290918</identifier><identifier>LCCallNum: HF5548.32-.33</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Exact sciences and technology ; Fuzzy Control ; Fuzzy Controller ; Fuzzy Rule ; Response Time ; Software ; Tuning Parameter</subject><ispartof>Lecture notes in computer science, 2002, Vol.2506, p.42-53</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-b0faea49de34c37d91aa24c37d7808b3cd24e4f5517fc0a8523a003b5dbf29143</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072036-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-36110-3_7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-36110-3_7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14573765$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Babin, Gilbert</contributor><contributor>Feridun, Metin</contributor><contributor>Kropf, Peter</contributor><contributor>Kropf, Peter</contributor><contributor>Babin, Gilbert</contributor><contributor>Feridun, Metin</contributor><creatorcontrib>Diao, Yixin</creatorcontrib><creatorcontrib>Hellerstein, Joseph L.</creatorcontrib><creatorcontrib>Parekh, Sujay</creatorcontrib><title>Optimizing Quality of Service Using Fuzzy Control</title><title>Lecture notes in computer science</title><description>The rapid growth of eCommerce increasingly means busi- ness revenues depend on providing good quality of service (QoS) for web site interactions. Traditionally, system administrators have been respon- sible for optimizing tuning parameters, a process that is time-consuming and skills-intensive, and therefore high cost. This paper describes an ap- proach to automating parameter tuning using a fuzzy controller that employs rules incorporating qualitative knowledge of the effect of tuning parameters. An example of such qualitative knowledge in the Apache web server is “MaxClients has a concave upward effect on response times.” Our studies using a real Apache web server suggest that such a scheme can improve performance without human intervention. Further, we show that the controller can automatically adapt to changes in workloads.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Control</subject><subject>Fuzzy Controller</subject><subject>Fuzzy Rule</subject><subject>Response Time</subject><subject>Software</subject><subject>Tuning Parameter</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540000808</isbn><isbn>3540000801</isbn><isbn>9783540361107</isbn><isbn>3540361103</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9UE1PwzAMDZ-iGjtz7YVjIImTpjmiiQES0oRg5yhN01Ho2pJ0SNuvJ90mfLCf_J4t-yF0Q8kdJUTeAxacYMgojVnLEzRVMofY27fkKUpoBBiAq7N_LkZO8nOUECAMK8nhEiUKBFNE0fwKTUP4GkXAeEazBNFFP9Trele3q_RtY5p62KZdlb47_1tbly7DSMw3u902nXXt4LvmGl1UpglueqwTtJw_fsye8evi6WX28Iot5HzABamMM1yVDrgFWSpqDNsjGQ8swJaMO14JQWVlickFAxPPKkRZVExRDhN0e9jbm2BNU3nT2jro3tdr47eaciFBZiLq8EEXItWunNdF130HTYkebdSgoy1671nEMurZca_vfjYuDNqNA9bF70xjP00_OB80EMmi05rGeQZ_MOZt7Q</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Diao, Yixin</creator><creator>Hellerstein, Joseph L.</creator><creator>Parekh, Sujay</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Optimizing Quality of Service Using Fuzzy Control</title><author>Diao, Yixin ; Hellerstein, Joseph L. ; Parekh, Sujay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-b0faea49de34c37d91aa24c37d7808b3cd24e4f5517fc0a8523a003b5dbf29143</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Control</topic><topic>Fuzzy Controller</topic><topic>Fuzzy Rule</topic><topic>Response Time</topic><topic>Software</topic><topic>Tuning Parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diao, Yixin</creatorcontrib><creatorcontrib>Hellerstein, Joseph L.</creatorcontrib><creatorcontrib>Parekh, Sujay</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diao, Yixin</au><au>Hellerstein, Joseph L.</au><au>Parekh, Sujay</au><au>Babin, Gilbert</au><au>Feridun, Metin</au><au>Kropf, Peter</au><au>Kropf, Peter</au><au>Babin, Gilbert</au><au>Feridun, Metin</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Optimizing Quality of Service Using Fuzzy Control</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2506</volume><spage>42</spage><epage>53</epage><pages>42-53</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540000808</isbn><isbn>3540000801</isbn><eisbn>9783540361107</eisbn><eisbn>3540361103</eisbn><abstract>The rapid growth of eCommerce increasingly means busi- ness revenues depend on providing good quality of service (QoS) for web site interactions. Traditionally, system administrators have been respon- sible for optimizing tuning parameters, a process that is time-consuming and skills-intensive, and therefore high cost. This paper describes an ap- proach to automating parameter tuning using a fuzzy controller that employs rules incorporating qualitative knowledge of the effect of tuning parameters. An example of such qualitative knowledge in the Apache web server is “MaxClients has a concave upward effect on response times.” Our studies using a real Apache web server suggest that such a scheme can improve performance without human intervention. Further, we show that the controller can automatically adapt to changes in workloads.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-36110-3_7</doi><oclcid>935290918</oclcid><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2002, Vol.2506, p.42-53
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14573765
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Exact sciences and technology
Fuzzy Control
Fuzzy Controller
Fuzzy Rule
Response Time
Software
Tuning Parameter
title Optimizing Quality of Service Using Fuzzy Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Optimizing%20Quality%20of%20Service%20Using%20Fuzzy%20Control&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Diao,%20Yixin&rft.date=2002&rft.volume=2506&rft.spage=42&rft.epage=53&rft.pages=42-53&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540000808&rft.isbn_list=3540000801&rft_id=info:doi/10.1007/3-540-36110-3_7&rft_dat=%3Cproquest_pasca%3EEBC3072036_13_52%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540361107&rft.eisbn_list=3540361103&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072036_13_52&rft_id=info:pmid/&rfr_iscdi=true