Connectionist Structures of Type 2 Fuzzy Inference Systems

In Fuzzy Inference Systems (FIS) the rule base consists of fuzzy relations between antecedents and consequents represented by classical fuzzy sets. Because their membership grades are exact real numbers in the unit interval [1], there is no uncertainty in this sort of specification. In many applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Starczewski, Janusz, Rutkowski, Leszek
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue
container_start_page 634
container_title
container_volume 2328
creator Starczewski, Janusz
Rutkowski, Leszek
description In Fuzzy Inference Systems (FIS) the rule base consists of fuzzy relations between antecedents and consequents represented by classical fuzzy sets. Because their membership grades are exact real numbers in the unit interval [1], there is no uncertainty in this sort of specification. In many applications there is some uncertainty as to the memberships, hence they can be stated as ordinary fuzzy sets of type 1 and can constitute type 2 fuzzy sets. In the world literature exists a global model of type 2 FIS. However it consists of an enormous number of embedded subsystems of type 1 and with regard to this model it has not found any use in connectionist realizations. In this paper we derive connectionist structures of type 2 FIS.
doi_str_mv 10.1007/3-540-48086-2_70
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14511748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6281185_670_633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7123ddfae0191cf96e5359f178dedcbfd8cbb934b7b4796798fc63809aaa0a6c3</originalsourceid><addsrcrecordid>eNotkDtPwzAQx81TlNKdMQtjii_n-MGGKgqVKjG0zJbj2FBok2I7Q_vpSVtuOen_Gn6E3AMdA6XiEfOS0ZxJKnleaEHPyEgJib141Og5GQAHyBGZuiC3RwOFKtglGVCkRa4Ew2syKHjBpUCpbsgoxm_aH4JCFAPyNGmbxtm0aptVTNkihc6mLriYtT5b7rYuK7Jpt9_vslnjXXCNddliF5PbxDty5c06utH_H5KP6cty8pbP319nk-d5bhF4ygUUWNfeOAoKrFfclVgqD0LWrraVr6WtKoWsEhUTigslveUoqTLGUMMtDsnDaXdrojVrH0xjV1Fvw2pjwk4DKwEEk31ufMrF3mo-XdBV2_5EDVQfaGrUPR99JKcPNPsC-x8O7W_nYtLu0LCuScGs7ZfZJhei5oUEkKXmgmqOiH_wGXI5</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6281185_670_633</pqid></control><display><type>book_chapter</type><title>Connectionist Structures of Type 2 Fuzzy Inference Systems</title><source>Springer Books</source><creator>Starczewski, Janusz ; Rutkowski, Leszek</creator><contributor>Paprzycki, Marcin ; Dongarra, Jack ; Wyrzykowski, Roman ; Wasniewski, Jerzy ; Waśniewski, Jerzy ; Wyrzykowski, Roman ; Paprzycki, Marcin ; Dongarra, Jack</contributor><creatorcontrib>Starczewski, Janusz ; Rutkowski, Leszek ; Paprzycki, Marcin ; Dongarra, Jack ; Wyrzykowski, Roman ; Wasniewski, Jerzy ; Waśniewski, Jerzy ; Wyrzykowski, Roman ; Paprzycki, Marcin ; Dongarra, Jack</creatorcontrib><description>In Fuzzy Inference Systems (FIS) the rule base consists of fuzzy relations between antecedents and consequents represented by classical fuzzy sets. Because their membership grades are exact real numbers in the unit interval [1], there is no uncertainty in this sort of specification. In many applications there is some uncertainty as to the memberships, hence they can be stated as ordinary fuzzy sets of type 1 and can constitute type 2 fuzzy sets. In the world literature exists a global model of type 2 FIS. However it consists of an enormous number of embedded subsystems of type 1 and with regard to this model it has not found any use in connectionist realizations. In this paper we derive connectionist structures of type 2 FIS.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540437924</identifier><identifier>ISBN: 9783540437925</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540480860</identifier><identifier>EISBN: 3540480862</identifier><identifier>DOI: 10.1007/3-540-48086-2_70</identifier><identifier>OCLC: 262687389</identifier><identifier>LCCallNum: QA76.9.S88</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Mathematical theory of computation ; Systems analysis &amp; design</subject><ispartof>Lecture notes in computer science, 2002, Vol.2328, p.634-642</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7123ddfae0191cf96e5359f178dedcbfd8cbb934b7b4796798fc63809aaa0a6c3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6281185-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-48086-2_70$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-48086-2_70$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14511748$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Paprzycki, Marcin</contributor><contributor>Dongarra, Jack</contributor><contributor>Wyrzykowski, Roman</contributor><contributor>Wasniewski, Jerzy</contributor><contributor>Waśniewski, Jerzy</contributor><contributor>Wyrzykowski, Roman</contributor><contributor>Paprzycki, Marcin</contributor><contributor>Dongarra, Jack</contributor><creatorcontrib>Starczewski, Janusz</creatorcontrib><creatorcontrib>Rutkowski, Leszek</creatorcontrib><title>Connectionist Structures of Type 2 Fuzzy Inference Systems</title><title>Lecture notes in computer science</title><description>In Fuzzy Inference Systems (FIS) the rule base consists of fuzzy relations between antecedents and consequents represented by classical fuzzy sets. Because their membership grades are exact real numbers in the unit interval [1], there is no uncertainty in this sort of specification. In many applications there is some uncertainty as to the memberships, hence they can be stated as ordinary fuzzy sets of type 1 and can constitute type 2 fuzzy sets. In the world literature exists a global model of type 2 FIS. However it consists of an enormous number of embedded subsystems of type 1 and with regard to this model it has not found any use in connectionist realizations. In this paper we derive connectionist structures of type 2 FIS.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Mathematical theory of computation</subject><subject>Systems analysis &amp; design</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540437924</isbn><isbn>9783540437925</isbn><isbn>9783540480860</isbn><isbn>3540480862</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkDtPwzAQx81TlNKdMQtjii_n-MGGKgqVKjG0zJbj2FBok2I7Q_vpSVtuOen_Gn6E3AMdA6XiEfOS0ZxJKnleaEHPyEgJib141Og5GQAHyBGZuiC3RwOFKtglGVCkRa4Ew2syKHjBpUCpbsgoxm_aH4JCFAPyNGmbxtm0aptVTNkihc6mLriYtT5b7rYuK7Jpt9_vslnjXXCNddliF5PbxDty5c06utH_H5KP6cty8pbP319nk-d5bhF4ygUUWNfeOAoKrFfclVgqD0LWrraVr6WtKoWsEhUTigslveUoqTLGUMMtDsnDaXdrojVrH0xjV1Fvw2pjwk4DKwEEk31ufMrF3mo-XdBV2_5EDVQfaGrUPR99JKcPNPsC-x8O7W_nYtLu0LCuScGs7ZfZJhei5oUEkKXmgmqOiH_wGXI5</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Starczewski, Janusz</creator><creator>Rutkowski, Leszek</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Connectionist Structures of Type 2 Fuzzy Inference Systems</title><author>Starczewski, Janusz ; Rutkowski, Leszek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7123ddfae0191cf96e5359f178dedcbfd8cbb934b7b4796798fc63809aaa0a6c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Mathematical theory of computation</topic><topic>Systems analysis &amp; design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starczewski, Janusz</creatorcontrib><creatorcontrib>Rutkowski, Leszek</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starczewski, Janusz</au><au>Rutkowski, Leszek</au><au>Paprzycki, Marcin</au><au>Dongarra, Jack</au><au>Wyrzykowski, Roman</au><au>Wasniewski, Jerzy</au><au>Waśniewski, Jerzy</au><au>Wyrzykowski, Roman</au><au>Paprzycki, Marcin</au><au>Dongarra, Jack</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Connectionist Structures of Type 2 Fuzzy Inference Systems</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2328</volume><spage>634</spage><epage>642</epage><pages>634-642</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540437924</isbn><isbn>9783540437925</isbn><eisbn>9783540480860</eisbn><eisbn>3540480862</eisbn><abstract>In Fuzzy Inference Systems (FIS) the rule base consists of fuzzy relations between antecedents and consequents represented by classical fuzzy sets. Because their membership grades are exact real numbers in the unit interval [1], there is no uncertainty in this sort of specification. In many applications there is some uncertainty as to the memberships, hence they can be stated as ordinary fuzzy sets of type 1 and can constitute type 2 fuzzy sets. In the world literature exists a global model of type 2 FIS. However it consists of an enormous number of embedded subsystems of type 1 and with regard to this model it has not found any use in connectionist realizations. In this paper we derive connectionist structures of type 2 FIS.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48086-2_70</doi><oclcid>262687389</oclcid><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2002, Vol.2328, p.634-642
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14511748
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
Mathematical theory of computation
Systems analysis & design
title Connectionist Structures of Type 2 Fuzzy Inference Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Connectionist%20Structures%20of%20Type%202%20Fuzzy%20Inference%20Systems&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Starczewski,%20Janusz&rft.date=2002&rft.volume=2328&rft.spage=634&rft.epage=642&rft.pages=634-642&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540437924&rft.isbn_list=9783540437925&rft_id=info:doi/10.1007/3-540-48086-2_70&rft_dat=%3Cproquest_pasca%3EEBC6281185_670_633%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540480860&rft.eisbn_list=3540480862&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6281185_670_633&rft_id=info:pmid/&rfr_iscdi=true