Connectionist Structures of Type 2 Fuzzy Inference Systems
In Fuzzy Inference Systems (FIS) the rule base consists of fuzzy relations between antecedents and consequents represented by classical fuzzy sets. Because their membership grades are exact real numbers in the unit interval [1], there is no uncertainty in this sort of specification. In many applicat...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 642 |
---|---|
container_issue | |
container_start_page | 634 |
container_title | |
container_volume | 2328 |
creator | Starczewski, Janusz Rutkowski, Leszek |
description | In Fuzzy Inference Systems (FIS) the rule base consists of fuzzy relations between antecedents and consequents represented by classical fuzzy sets. Because their membership grades are exact real numbers in the unit interval [1], there is no uncertainty in this sort of specification. In many applications there is some uncertainty as to the memberships, hence they can be stated as ordinary fuzzy sets of type 1 and can constitute type 2 fuzzy sets. In the world literature exists a global model of type 2 FIS. However it consists of an enormous number of embedded subsystems of type 1 and with regard to this model it has not found any use in connectionist realizations. In this paper we derive connectionist structures of type 2 FIS. |
doi_str_mv | 10.1007/3-540-48086-2_70 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14511748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6281185_670_633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7123ddfae0191cf96e5359f178dedcbfd8cbb934b7b4796798fc63809aaa0a6c3</originalsourceid><addsrcrecordid>eNotkDtPwzAQx81TlNKdMQtjii_n-MGGKgqVKjG0zJbj2FBok2I7Q_vpSVtuOen_Gn6E3AMdA6XiEfOS0ZxJKnleaEHPyEgJib141Og5GQAHyBGZuiC3RwOFKtglGVCkRa4Ew2syKHjBpUCpbsgoxm_aH4JCFAPyNGmbxtm0aptVTNkihc6mLriYtT5b7rYuK7Jpt9_vslnjXXCNddliF5PbxDty5c06utH_H5KP6cty8pbP319nk-d5bhF4ygUUWNfeOAoKrFfclVgqD0LWrraVr6WtKoWsEhUTigslveUoqTLGUMMtDsnDaXdrojVrH0xjV1Fvw2pjwk4DKwEEk31ufMrF3mo-XdBV2_5EDVQfaGrUPR99JKcPNPsC-x8O7W_nYtLu0LCuScGs7ZfZJhei5oUEkKXmgmqOiH_wGXI5</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC6281185_670_633</pqid></control><display><type>book_chapter</type><title>Connectionist Structures of Type 2 Fuzzy Inference Systems</title><source>Springer Books</source><creator>Starczewski, Janusz ; Rutkowski, Leszek</creator><contributor>Paprzycki, Marcin ; Dongarra, Jack ; Wyrzykowski, Roman ; Wasniewski, Jerzy ; Waśniewski, Jerzy ; Wyrzykowski, Roman ; Paprzycki, Marcin ; Dongarra, Jack</contributor><creatorcontrib>Starczewski, Janusz ; Rutkowski, Leszek ; Paprzycki, Marcin ; Dongarra, Jack ; Wyrzykowski, Roman ; Wasniewski, Jerzy ; Waśniewski, Jerzy ; Wyrzykowski, Roman ; Paprzycki, Marcin ; Dongarra, Jack</creatorcontrib><description>In Fuzzy Inference Systems (FIS) the rule base consists of fuzzy relations between antecedents and consequents represented by classical fuzzy sets. Because their membership grades are exact real numbers in the unit interval [1], there is no uncertainty in this sort of specification. In many applications there is some uncertainty as to the memberships, hence they can be stated as ordinary fuzzy sets of type 1 and can constitute type 2 fuzzy sets. In the world literature exists a global model of type 2 FIS. However it consists of an enormous number of embedded subsystems of type 1 and with regard to this model it has not found any use in connectionist realizations. In this paper we derive connectionist structures of type 2 FIS.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540437924</identifier><identifier>ISBN: 9783540437925</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540480860</identifier><identifier>EISBN: 3540480862</identifier><identifier>DOI: 10.1007/3-540-48086-2_70</identifier><identifier>OCLC: 262687389</identifier><identifier>LCCallNum: QA76.9.S88</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Mathematical theory of computation ; Systems analysis & design</subject><ispartof>Lecture notes in computer science, 2002, Vol.2328, p.634-642</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7123ddfae0191cf96e5359f178dedcbfd8cbb934b7b4796798fc63809aaa0a6c3</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/6281185-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-48086-2_70$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-48086-2_70$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14511748$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Paprzycki, Marcin</contributor><contributor>Dongarra, Jack</contributor><contributor>Wyrzykowski, Roman</contributor><contributor>Wasniewski, Jerzy</contributor><contributor>Waśniewski, Jerzy</contributor><contributor>Wyrzykowski, Roman</contributor><contributor>Paprzycki, Marcin</contributor><contributor>Dongarra, Jack</contributor><creatorcontrib>Starczewski, Janusz</creatorcontrib><creatorcontrib>Rutkowski, Leszek</creatorcontrib><title>Connectionist Structures of Type 2 Fuzzy Inference Systems</title><title>Lecture notes in computer science</title><description>In Fuzzy Inference Systems (FIS) the rule base consists of fuzzy relations between antecedents and consequents represented by classical fuzzy sets. Because their membership grades are exact real numbers in the unit interval [1], there is no uncertainty in this sort of specification. In many applications there is some uncertainty as to the memberships, hence they can be stated as ordinary fuzzy sets of type 1 and can constitute type 2 fuzzy sets. In the world literature exists a global model of type 2 FIS. However it consists of an enormous number of embedded subsystems of type 1 and with regard to this model it has not found any use in connectionist realizations. In this paper we derive connectionist structures of type 2 FIS.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Mathematical theory of computation</subject><subject>Systems analysis & design</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540437924</isbn><isbn>9783540437925</isbn><isbn>9783540480860</isbn><isbn>3540480862</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkDtPwzAQx81TlNKdMQtjii_n-MGGKgqVKjG0zJbj2FBok2I7Q_vpSVtuOen_Gn6E3AMdA6XiEfOS0ZxJKnleaEHPyEgJib141Og5GQAHyBGZuiC3RwOFKtglGVCkRa4Ew2syKHjBpUCpbsgoxm_aH4JCFAPyNGmbxtm0aptVTNkihc6mLriYtT5b7rYuK7Jpt9_vslnjXXCNddliF5PbxDty5c06utH_H5KP6cty8pbP319nk-d5bhF4ygUUWNfeOAoKrFfclVgqD0LWrraVr6WtKoWsEhUTigslveUoqTLGUMMtDsnDaXdrojVrH0xjV1Fvw2pjwk4DKwEEk31ufMrF3mo-XdBV2_5EDVQfaGrUPR99JKcPNPsC-x8O7W_nYtLu0LCuScGs7ZfZJhei5oUEkKXmgmqOiH_wGXI5</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Starczewski, Janusz</creator><creator>Rutkowski, Leszek</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Connectionist Structures of Type 2 Fuzzy Inference Systems</title><author>Starczewski, Janusz ; Rutkowski, Leszek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7123ddfae0191cf96e5359f178dedcbfd8cbb934b7b4796798fc63809aaa0a6c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Mathematical theory of computation</topic><topic>Systems analysis & design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starczewski, Janusz</creatorcontrib><creatorcontrib>Rutkowski, Leszek</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starczewski, Janusz</au><au>Rutkowski, Leszek</au><au>Paprzycki, Marcin</au><au>Dongarra, Jack</au><au>Wyrzykowski, Roman</au><au>Wasniewski, Jerzy</au><au>Waśniewski, Jerzy</au><au>Wyrzykowski, Roman</au><au>Paprzycki, Marcin</au><au>Dongarra, Jack</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Connectionist Structures of Type 2 Fuzzy Inference Systems</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2328</volume><spage>634</spage><epage>642</epage><pages>634-642</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540437924</isbn><isbn>9783540437925</isbn><eisbn>9783540480860</eisbn><eisbn>3540480862</eisbn><abstract>In Fuzzy Inference Systems (FIS) the rule base consists of fuzzy relations between antecedents and consequents represented by classical fuzzy sets. Because their membership grades are exact real numbers in the unit interval [1], there is no uncertainty in this sort of specification. In many applications there is some uncertainty as to the memberships, hence they can be stated as ordinary fuzzy sets of type 1 and can constitute type 2 fuzzy sets. In the world literature exists a global model of type 2 FIS. However it consists of an enormous number of embedded subsystems of type 1 and with regard to this model it has not found any use in connectionist realizations. In this paper we derive connectionist structures of type 2 FIS.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-48086-2_70</doi><oclcid>262687389</oclcid><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2002, Vol.2328, p.634-642 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14511748 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science Computer science control theory systems Connectionism. Neural networks Exact sciences and technology Mathematical theory of computation Systems analysis & design |
title | Connectionist Structures of Type 2 Fuzzy Inference Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Connectionist%20Structures%20of%20Type%202%20Fuzzy%20Inference%20Systems&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Starczewski,%20Janusz&rft.date=2002&rft.volume=2328&rft.spage=634&rft.epage=642&rft.pages=634-642&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540437924&rft.isbn_list=9783540437925&rft_id=info:doi/10.1007/3-540-48086-2_70&rft_dat=%3Cproquest_pasca%3EEBC6281185_670_633%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540480860&rft.eisbn_list=3540480862&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC6281185_670_633&rft_id=info:pmid/&rfr_iscdi=true |