Configuration Theories

A new framework for describing concurrent systems is presented. Rules for composing configurations of concurrent programs are represented by sequents Γ ⊢ρ Δ, where Γ and Δ are sequences of partially ordered sets (of events) and ρ is a matrix of monotone maps from the components of Γ to the component...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Cenciarelli, Pietro
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 215
container_issue
container_start_page 200
container_title
container_volume 2471
creator Cenciarelli, Pietro
description A new framework for describing concurrent systems is presented. Rules for composing configurations of concurrent programs are represented by sequents Γ ⊢ρ Δ, where Γ and Δ are sequences of partially ordered sets (of events) and ρ is a matrix of monotone maps from the components of Γ to the components of Δ. Such a sequent expresses that whenever a configuration has certain specified subposets of events (Γ), then it extends to a configuration containing one of several specified subposets (Δ). The structural rules of Gentzen’s sequent calculus are decorated by suitable operations on matrices, where cut corresponds to product. The calculus thus obtained is shown to be sound with respect to interpretation in configuration structures [GG90]. Completeness is proven for a restriction of the calculus to finite sequents. As a case study we axiomatise the Java memory model, and formally derive a non-trivial property of thread-memory interaction.
doi_str_mv 10.1007/3-540-45793-3_14
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14478002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073014_19_213</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-9be877987cfa49bc9ac134a06c27a9e5b8f052d0bfaf25f43238fc4ed5b888db3</originalsourceid><addsrcrecordid>eNotULtOAzEQNOIhQkiLKGkoHdZe-2yXKAoPKRJNqC2fYycH4e6wLwV_j_PYZrW7M6OdIeSewZQBqCekUgAVUhmkaJk4IzdYNocFnp8GwQXICzICBE6NEnhFRqrSUCFHeU0mOX9BKeSccTYid7Oujc16l9zQdO3DchO61IR8Sy6j2-YwOfUx-XyZL2dvdPHx-j57XtCeV3qgpg5aKaOVj06Y2hvnGQoHlefKmSBrHUHyFdTRRS6jKD_o6EVYlYvWqxrH5PGo27vs3TYm1_om2z41Py79FY9CaQBecNMjLpdTuw7J1l33nS0Du4_Goi3e7SEJu4-mEPAknLrfXciDDXuGD-2Q3NZvXD-ElC2CQmDCMmM5Q_wHGBliHg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073014_19_213</pqid></control><display><type>book_chapter</type><title>Configuration Theories</title><source>Springer Books</source><creator>Cenciarelli, Pietro</creator><contributor>Bradfield, Julian ; Bradfield, Julian</contributor><creatorcontrib>Cenciarelli, Pietro ; Bradfield, Julian ; Bradfield, Julian</creatorcontrib><description>A new framework for describing concurrent systems is presented. Rules for composing configurations of concurrent programs are represented by sequents Γ ⊢ρ Δ, where Γ and Δ are sequences of partially ordered sets (of events) and ρ is a matrix of monotone maps from the components of Γ to the components of Δ. Such a sequent expresses that whenever a configuration has certain specified subposets of events (Γ), then it extends to a configuration containing one of several specified subposets (Δ). The structural rules of Gentzen’s sequent calculus are decorated by suitable operations on matrices, where cut corresponds to product. The calculus thus obtained is shown to be sound with respect to interpretation in configuration structures [GG90]. Completeness is proven for a restriction of the calculus to finite sequents. As a case study we axiomatise the Java memory model, and formally derive a non-trivial property of thread-memory interaction.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540442405</identifier><identifier>ISBN: 9783540442400</identifier><identifier>EISBN: 3540457933</identifier><identifier>EISBN: 9783540457930</identifier><identifier>DOI: 10.1007/3-540-45793-3_14</identifier><identifier>OCLC: 768063235</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; concurrency ; configuration structures ; Exact sciences and technology ; Java ; semantics ; sequent calculus ; Theoretical computing</subject><ispartof>Computer Science Logic, 2002, Vol.2471, p.200-215</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073014-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45793-3_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45793-3_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14478002$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Bradfield, Julian</contributor><contributor>Bradfield, Julian</contributor><creatorcontrib>Cenciarelli, Pietro</creatorcontrib><title>Configuration Theories</title><title>Computer Science Logic</title><description>A new framework for describing concurrent systems is presented. Rules for composing configurations of concurrent programs are represented by sequents Γ ⊢ρ Δ, where Γ and Δ are sequences of partially ordered sets (of events) and ρ is a matrix of monotone maps from the components of Γ to the components of Δ. Such a sequent expresses that whenever a configuration has certain specified subposets of events (Γ), then it extends to a configuration containing one of several specified subposets (Δ). The structural rules of Gentzen’s sequent calculus are decorated by suitable operations on matrices, where cut corresponds to product. The calculus thus obtained is shown to be sound with respect to interpretation in configuration structures [GG90]. Completeness is proven for a restriction of the calculus to finite sequents. As a case study we axiomatise the Java memory model, and formally derive a non-trivial property of thread-memory interaction.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>concurrency</subject><subject>configuration structures</subject><subject>Exact sciences and technology</subject><subject>Java</subject><subject>semantics</subject><subject>sequent calculus</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><isbn>3540442405</isbn><isbn>9783540442400</isbn><isbn>3540457933</isbn><isbn>9783540457930</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotULtOAzEQNOIhQkiLKGkoHdZe-2yXKAoPKRJNqC2fYycH4e6wLwV_j_PYZrW7M6OdIeSewZQBqCekUgAVUhmkaJk4IzdYNocFnp8GwQXICzICBE6NEnhFRqrSUCFHeU0mOX9BKeSccTYid7Oujc16l9zQdO3DchO61IR8Sy6j2-YwOfUx-XyZL2dvdPHx-j57XtCeV3qgpg5aKaOVj06Y2hvnGQoHlefKmSBrHUHyFdTRRS6jKD_o6EVYlYvWqxrH5PGo27vs3TYm1_om2z41Py79FY9CaQBecNMjLpdTuw7J1l33nS0Du4_Goi3e7SEJu4-mEPAknLrfXciDDXuGD-2Q3NZvXD-ElC2CQmDCMmM5Q_wHGBliHg</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Cenciarelli, Pietro</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Configuration Theories</title><author>Cenciarelli, Pietro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-9be877987cfa49bc9ac134a06c27a9e5b8f052d0bfaf25f43238fc4ed5b888db3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>concurrency</topic><topic>configuration structures</topic><topic>Exact sciences and technology</topic><topic>Java</topic><topic>semantics</topic><topic>sequent calculus</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cenciarelli, Pietro</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cenciarelli, Pietro</au><au>Bradfield, Julian</au><au>Bradfield, Julian</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Configuration Theories</atitle><btitle>Computer Science Logic</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2471</volume><spage>200</spage><epage>215</epage><pages>200-215</pages><issn>0302-9743</issn><isbn>3540442405</isbn><isbn>9783540442400</isbn><eisbn>3540457933</eisbn><eisbn>9783540457930</eisbn><abstract>A new framework for describing concurrent systems is presented. Rules for composing configurations of concurrent programs are represented by sequents Γ ⊢ρ Δ, where Γ and Δ are sequences of partially ordered sets (of events) and ρ is a matrix of monotone maps from the components of Γ to the components of Δ. Such a sequent expresses that whenever a configuration has certain specified subposets of events (Γ), then it extends to a configuration containing one of several specified subposets (Δ). The structural rules of Gentzen’s sequent calculus are decorated by suitable operations on matrices, where cut corresponds to product. The calculus thus obtained is shown to be sound with respect to interpretation in configuration structures [GG90]. Completeness is proven for a restriction of the calculus to finite sequents. As a case study we axiomatise the Java memory model, and formally derive a non-trivial property of thread-memory interaction.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45793-3_14</doi><oclcid>768063235</oclcid><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Science Logic, 2002, Vol.2471, p.200-215
issn 0302-9743
language eng
recordid cdi_pascalfrancis_primary_14478002
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
concurrency
configuration structures
Exact sciences and technology
Java
semantics
sequent calculus
Theoretical computing
title Configuration Theories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Configuration%20Theories&rft.btitle=Computer%20Science%20Logic&rft.au=Cenciarelli,%20Pietro&rft.date=2002&rft.volume=2471&rft.spage=200&rft.epage=215&rft.pages=200-215&rft.issn=0302-9743&rft.isbn=3540442405&rft.isbn_list=9783540442400&rft_id=info:doi/10.1007/3-540-45793-3_14&rft_dat=%3Cproquest_pasca%3EEBC3073014_19_213%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540457933&rft.eisbn_list=9783540457930&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073014_19_213&rft_id=info:pmid/&rfr_iscdi=true