Configuration Theories
A new framework for describing concurrent systems is presented. Rules for composing configurations of concurrent programs are represented by sequents Γ ⊢ρ Δ, where Γ and Δ are sequences of partially ordered sets (of events) and ρ is a matrix of monotone maps from the components of Γ to the component...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | |
container_start_page | 200 |
container_title | |
container_volume | 2471 |
creator | Cenciarelli, Pietro |
description | A new framework for describing concurrent systems is presented. Rules for composing configurations of concurrent programs are represented by sequents Γ ⊢ρ Δ, where Γ and Δ are sequences of partially ordered sets (of events) and ρ is a matrix of monotone maps from the components of Γ to the components of Δ. Such a sequent expresses that whenever a configuration has certain specified subposets of events (Γ), then it extends to a configuration containing one of several specified subposets (Δ). The structural rules of Gentzen’s sequent calculus are decorated by suitable operations on matrices, where cut corresponds to product. The calculus thus obtained is shown to be sound with respect to interpretation in configuration structures [GG90]. Completeness is proven for a restriction of the calculus to finite sequents. As a case study we axiomatise the Java memory model, and formally derive a non-trivial property of thread-memory interaction. |
doi_str_mv | 10.1007/3-540-45793-3_14 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14478002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073014_19_213</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-9be877987cfa49bc9ac134a06c27a9e5b8f052d0bfaf25f43238fc4ed5b888db3</originalsourceid><addsrcrecordid>eNotULtOAzEQNOIhQkiLKGkoHdZe-2yXKAoPKRJNqC2fYycH4e6wLwV_j_PYZrW7M6OdIeSewZQBqCekUgAVUhmkaJk4IzdYNocFnp8GwQXICzICBE6NEnhFRqrSUCFHeU0mOX9BKeSccTYid7Oujc16l9zQdO3DchO61IR8Sy6j2-YwOfUx-XyZL2dvdPHx-j57XtCeV3qgpg5aKaOVj06Y2hvnGQoHlefKmSBrHUHyFdTRRS6jKD_o6EVYlYvWqxrH5PGo27vs3TYm1_om2z41Py79FY9CaQBecNMjLpdTuw7J1l33nS0Du4_Goi3e7SEJu4-mEPAknLrfXciDDXuGD-2Q3NZvXD-ElC2CQmDCMmM5Q_wHGBliHg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073014_19_213</pqid></control><display><type>book_chapter</type><title>Configuration Theories</title><source>Springer Books</source><creator>Cenciarelli, Pietro</creator><contributor>Bradfield, Julian ; Bradfield, Julian</contributor><creatorcontrib>Cenciarelli, Pietro ; Bradfield, Julian ; Bradfield, Julian</creatorcontrib><description>A new framework for describing concurrent systems is presented. Rules for composing configurations of concurrent programs are represented by sequents Γ ⊢ρ Δ, where Γ and Δ are sequences of partially ordered sets (of events) and ρ is a matrix of monotone maps from the components of Γ to the components of Δ. Such a sequent expresses that whenever a configuration has certain specified subposets of events (Γ), then it extends to a configuration containing one of several specified subposets (Δ). The structural rules of Gentzen’s sequent calculus are decorated by suitable operations on matrices, where cut corresponds to product. The calculus thus obtained is shown to be sound with respect to interpretation in configuration structures [GG90]. Completeness is proven for a restriction of the calculus to finite sequents. As a case study we axiomatise the Java memory model, and formally derive a non-trivial property of thread-memory interaction.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540442405</identifier><identifier>ISBN: 9783540442400</identifier><identifier>EISBN: 3540457933</identifier><identifier>EISBN: 9783540457930</identifier><identifier>DOI: 10.1007/3-540-45793-3_14</identifier><identifier>OCLC: 768063235</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; concurrency ; configuration structures ; Exact sciences and technology ; Java ; semantics ; sequent calculus ; Theoretical computing</subject><ispartof>Computer Science Logic, 2002, Vol.2471, p.200-215</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073014-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45793-3_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45793-3_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14478002$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Bradfield, Julian</contributor><contributor>Bradfield, Julian</contributor><creatorcontrib>Cenciarelli, Pietro</creatorcontrib><title>Configuration Theories</title><title>Computer Science Logic</title><description>A new framework for describing concurrent systems is presented. Rules for composing configurations of concurrent programs are represented by sequents Γ ⊢ρ Δ, where Γ and Δ are sequences of partially ordered sets (of events) and ρ is a matrix of monotone maps from the components of Γ to the components of Δ. Such a sequent expresses that whenever a configuration has certain specified subposets of events (Γ), then it extends to a configuration containing one of several specified subposets (Δ). The structural rules of Gentzen’s sequent calculus are decorated by suitable operations on matrices, where cut corresponds to product. The calculus thus obtained is shown to be sound with respect to interpretation in configuration structures [GG90]. Completeness is proven for a restriction of the calculus to finite sequents. As a case study we axiomatise the Java memory model, and formally derive a non-trivial property of thread-memory interaction.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>concurrency</subject><subject>configuration structures</subject><subject>Exact sciences and technology</subject><subject>Java</subject><subject>semantics</subject><subject>sequent calculus</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><isbn>3540442405</isbn><isbn>9783540442400</isbn><isbn>3540457933</isbn><isbn>9783540457930</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotULtOAzEQNOIhQkiLKGkoHdZe-2yXKAoPKRJNqC2fYycH4e6wLwV_j_PYZrW7M6OdIeSewZQBqCekUgAVUhmkaJk4IzdYNocFnp8GwQXICzICBE6NEnhFRqrSUCFHeU0mOX9BKeSccTYid7Oujc16l9zQdO3DchO61IR8Sy6j2-YwOfUx-XyZL2dvdPHx-j57XtCeV3qgpg5aKaOVj06Y2hvnGQoHlefKmSBrHUHyFdTRRS6jKD_o6EVYlYvWqxrH5PGo27vs3TYm1_om2z41Py79FY9CaQBecNMjLpdTuw7J1l33nS0Du4_Goi3e7SEJu4-mEPAknLrfXciDDXuGD-2Q3NZvXD-ElC2CQmDCMmM5Q_wHGBliHg</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Cenciarelli, Pietro</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Configuration Theories</title><author>Cenciarelli, Pietro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-9be877987cfa49bc9ac134a06c27a9e5b8f052d0bfaf25f43238fc4ed5b888db3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>concurrency</topic><topic>configuration structures</topic><topic>Exact sciences and technology</topic><topic>Java</topic><topic>semantics</topic><topic>sequent calculus</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cenciarelli, Pietro</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cenciarelli, Pietro</au><au>Bradfield, Julian</au><au>Bradfield, Julian</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Configuration Theories</atitle><btitle>Computer Science Logic</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2471</volume><spage>200</spage><epage>215</epage><pages>200-215</pages><issn>0302-9743</issn><isbn>3540442405</isbn><isbn>9783540442400</isbn><eisbn>3540457933</eisbn><eisbn>9783540457930</eisbn><abstract>A new framework for describing concurrent systems is presented. Rules for composing configurations of concurrent programs are represented by sequents Γ ⊢ρ Δ, where Γ and Δ are sequences of partially ordered sets (of events) and ρ is a matrix of monotone maps from the components of Γ to the components of Δ. Such a sequent expresses that whenever a configuration has certain specified subposets of events (Γ), then it extends to a configuration containing one of several specified subposets (Δ). The structural rules of Gentzen’s sequent calculus are decorated by suitable operations on matrices, where cut corresponds to product. The calculus thus obtained is shown to be sound with respect to interpretation in configuration structures [GG90]. Completeness is proven for a restriction of the calculus to finite sequents. As a case study we axiomatise the Java memory model, and formally derive a non-trivial property of thread-memory interaction.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45793-3_14</doi><oclcid>768063235</oclcid><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computer Science Logic, 2002, Vol.2471, p.200-215 |
issn | 0302-9743 |
language | eng |
recordid | cdi_pascalfrancis_primary_14478002 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems concurrency configuration structures Exact sciences and technology Java semantics sequent calculus Theoretical computing |
title | Configuration Theories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Configuration%20Theories&rft.btitle=Computer%20Science%20Logic&rft.au=Cenciarelli,%20Pietro&rft.date=2002&rft.volume=2471&rft.spage=200&rft.epage=215&rft.pages=200-215&rft.issn=0302-9743&rft.isbn=3540442405&rft.isbn_list=9783540442400&rft_id=info:doi/10.1007/3-540-45793-3_14&rft_dat=%3Cproquest_pasca%3EEBC3073014_19_213%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540457933&rft.eisbn_list=9783540457930&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073014_19_213&rft_id=info:pmid/&rfr_iscdi=true |