Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics
Nanometer-sized iron oxide powder was prepared by reaction of iron pentacarbonyl (Fe(CO)5) and oxygen in a gas phase reactor. X-ray diffraction and differential thermal analysis revealed that depending on the reaction temperature α-Fe2O3 (temperature>600°C) or the thermodynamically less stable γ-...
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2003-02, Vol.78 (2), p.453-458 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 458 |
---|---|
container_issue | 2 |
container_start_page | 453 |
container_title | Materials chemistry and physics |
container_volume | 78 |
creator | Orthner, H.R Roth, P |
description | Nanometer-sized iron oxide powder was prepared by reaction of iron pentacarbonyl (Fe(CO)5) and oxygen in a gas phase reactor. X-ray diffraction and differential thermal analysis revealed that depending on the reaction temperature α-Fe2O3 (temperature>600°C) or the thermodynamically less stable γ-Fe2O3 (temperature |
doi_str_mv | 10.1016/S0254-0584(02)00228-6 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14435771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058402002286</els_id><sourcerecordid>S0254058402002286</sourcerecordid><originalsourceid>FETCH-LOGICAL-e239t-fdc155ac226431027f54d0c1f08c5a4203d14448ff3f13a917de23b2729614c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QchG0MXovUnm5UaktCoUXNh9iHnQyHQyJoO1_96Ztrg6m3M-7v0IuUa4R8Di4QNYLjLIK3EL7A6AsSorTsgEq7LOOEd2Sib_lXNykdIXAJaIfEK-FyFuVO9DS4OjPo75642lXdgaG6lvqaLr0Gdb1TTUNWFLo1W6D_GRzp2zuh93XQzapkR1aI0fYYkOoCNCr1UcFjb61HudLsmZU02yV8ecktVivpq9Zsv3l7fZ8zKzjNd95ozGPFeasUJwBFa6XBjQ6KDSuRIMuEEhROUcd8hVjaUZhp-sZHWBQvMpuTlgO5W0alxUrfZJdtFvVNzJYcvzssSh93To2eGWH2-jTNrbVlvj4_CdNMFLBDmKlnvRcrQogcm9aFnwP_Nqckc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Orthner, H.R ; Roth, P</creator><creatorcontrib>Orthner, H.R ; Roth, P</creatorcontrib><description>Nanometer-sized iron oxide powder was prepared by reaction of iron pentacarbonyl (Fe(CO)5) and oxygen in a gas phase reactor. X-ray diffraction and differential thermal analysis revealed that depending on the reaction temperature α-Fe2O3 (temperature>600°C) or the thermodynamically less stable γ-Fe2O3 (temperature<600°C) was formed. The surface area of the γ-Fe2O3 was in the range 100–240m2g−1. By reducing the reaction pressure, the surface area of the powders produced was increased. High precursor concentrations also favored the formation of powders with higher surface areas. While the pressure effect can be explained by the growth time of the particles, the slower particle growth at higher initial Fe(CO)5 concentration is unexpected and cannot be explained by diffusion-controlled particle coagulation. Transmission electron microscopy of γ-Fe2O3 revealed in accordance with area measurements primary particle diameters below 10nm.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/S0254-0584(02)00228-6</identifier><identifier>CODEN: MCHPDR</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Flow reactor ; Growth mechanism ; Iron oxide ; Materials science ; Materials synthesis; materials processing ; Physics ; Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation ; Sintering</subject><ispartof>Materials chemistry and physics, 2003-02, Vol.78 (2), p.453-458</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0254-0584(02)00228-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14435771$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Orthner, H.R</creatorcontrib><creatorcontrib>Roth, P</creatorcontrib><title>Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics</title><title>Materials chemistry and physics</title><description>Nanometer-sized iron oxide powder was prepared by reaction of iron pentacarbonyl (Fe(CO)5) and oxygen in a gas phase reactor. X-ray diffraction and differential thermal analysis revealed that depending on the reaction temperature α-Fe2O3 (temperature>600°C) or the thermodynamically less stable γ-Fe2O3 (temperature<600°C) was formed. The surface area of the γ-Fe2O3 was in the range 100–240m2g−1. By reducing the reaction pressure, the surface area of the powders produced was increased. High precursor concentrations also favored the formation of powders with higher surface areas. While the pressure effect can be explained by the growth time of the particles, the slower particle growth at higher initial Fe(CO)5 concentration is unexpected and cannot be explained by diffusion-controlled particle coagulation. Transmission electron microscopy of γ-Fe2O3 revealed in accordance with area measurements primary particle diameters below 10nm.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Flow reactor</subject><subject>Growth mechanism</subject><subject>Iron oxide</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Physics</subject><subject>Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation</subject><subject>Sintering</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKs_QchG0MXovUnm5UaktCoUXNh9iHnQyHQyJoO1_96Ztrg6m3M-7v0IuUa4R8Di4QNYLjLIK3EL7A6AsSorTsgEq7LOOEd2Sib_lXNykdIXAJaIfEK-FyFuVO9DS4OjPo75642lXdgaG6lvqaLr0Gdb1TTUNWFLo1W6D_GRzp2zuh93XQzapkR1aI0fYYkOoCNCr1UcFjb61HudLsmZU02yV8ecktVivpq9Zsv3l7fZ8zKzjNd95ozGPFeasUJwBFa6XBjQ6KDSuRIMuEEhROUcd8hVjaUZhp-sZHWBQvMpuTlgO5W0alxUrfZJdtFvVNzJYcvzssSh93To2eGWH2-jTNrbVlvj4_CdNMFLBDmKlnvRcrQogcm9aFnwP_Nqckc</recordid><startdate>20030217</startdate><enddate>20030217</enddate><creator>Orthner, H.R</creator><creator>Roth, P</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20030217</creationdate><title>Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics</title><author>Orthner, H.R ; Roth, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e239t-fdc155ac226431027f54d0c1f08c5a4203d14448ff3f13a917de23b2729614c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Flow reactor</topic><topic>Growth mechanism</topic><topic>Iron oxide</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Physics</topic><topic>Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation</topic><topic>Sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orthner, H.R</creatorcontrib><creatorcontrib>Roth, P</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orthner, H.R</au><au>Roth, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics</atitle><jtitle>Materials chemistry and physics</jtitle><date>2003-02-17</date><risdate>2003</risdate><volume>78</volume><issue>2</issue><spage>453</spage><epage>458</epage><pages>453-458</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><coden>MCHPDR</coden><abstract>Nanometer-sized iron oxide powder was prepared by reaction of iron pentacarbonyl (Fe(CO)5) and oxygen in a gas phase reactor. X-ray diffraction and differential thermal analysis revealed that depending on the reaction temperature α-Fe2O3 (temperature>600°C) or the thermodynamically less stable γ-Fe2O3 (temperature<600°C) was formed. The surface area of the γ-Fe2O3 was in the range 100–240m2g−1. By reducing the reaction pressure, the surface area of the powders produced was increased. High precursor concentrations also favored the formation of powders with higher surface areas. While the pressure effect can be explained by the growth time of the particles, the slower particle growth at higher initial Fe(CO)5 concentration is unexpected and cannot be explained by diffusion-controlled particle coagulation. Transmission electron microscopy of γ-Fe2O3 revealed in accordance with area measurements primary particle diameters below 10nm.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0254-0584(02)00228-6</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-0584 |
ispartof | Materials chemistry and physics, 2003-02, Vol.78 (2), p.453-458 |
issn | 0254-0584 1879-3312 |
language | eng |
recordid | cdi_pascalfrancis_primary_14435771 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Flow reactor Growth mechanism Iron oxide Materials science Materials synthesis materials processing Physics Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation Sintering |
title | Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20iron%20oxide%20powder%20in%20a%20hot-wall%20flow%20reactor:%20Effect%20of%20process%20conditions%20on%20powder%20characteristics&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Orthner,%20H.R&rft.date=2003-02-17&rft.volume=78&rft.issue=2&rft.spage=453&rft.epage=458&rft.pages=453-458&rft.issn=0254-0584&rft.eissn=1879-3312&rft.coden=MCHPDR&rft_id=info:doi/10.1016/S0254-0584(02)00228-6&rft_dat=%3Celsevier_pasca%3ES0254058402002286%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0254058402002286&rfr_iscdi=true |