Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics

Nanometer-sized iron oxide powder was prepared by reaction of iron pentacarbonyl (Fe(CO)5) and oxygen in a gas phase reactor. X-ray diffraction and differential thermal analysis revealed that depending on the reaction temperature α-Fe2O3 (temperature>600°C) or the thermodynamically less stable γ-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials chemistry and physics 2003-02, Vol.78 (2), p.453-458
Hauptverfasser: Orthner, H.R, Roth, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 458
container_issue 2
container_start_page 453
container_title Materials chemistry and physics
container_volume 78
creator Orthner, H.R
Roth, P
description Nanometer-sized iron oxide powder was prepared by reaction of iron pentacarbonyl (Fe(CO)5) and oxygen in a gas phase reactor. X-ray diffraction and differential thermal analysis revealed that depending on the reaction temperature α-Fe2O3 (temperature>600°C) or the thermodynamically less stable γ-Fe2O3 (temperature
doi_str_mv 10.1016/S0254-0584(02)00228-6
format Article
fullrecord <record><control><sourceid>elsevier_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14435771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058402002286</els_id><sourcerecordid>S0254058402002286</sourcerecordid><originalsourceid>FETCH-LOGICAL-e239t-fdc155ac226431027f54d0c1f08c5a4203d14448ff3f13a917de23b2729614c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QchG0MXovUnm5UaktCoUXNh9iHnQyHQyJoO1_96Ztrg6m3M-7v0IuUa4R8Di4QNYLjLIK3EL7A6AsSorTsgEq7LOOEd2Sib_lXNykdIXAJaIfEK-FyFuVO9DS4OjPo75642lXdgaG6lvqaLr0Gdb1TTUNWFLo1W6D_GRzp2zuh93XQzapkR1aI0fYYkOoCNCr1UcFjb61HudLsmZU02yV8ecktVivpq9Zsv3l7fZ8zKzjNd95ozGPFeasUJwBFa6XBjQ6KDSuRIMuEEhROUcd8hVjaUZhp-sZHWBQvMpuTlgO5W0alxUrfZJdtFvVNzJYcvzssSh93To2eGWH2-jTNrbVlvj4_CdNMFLBDmKlnvRcrQogcm9aFnwP_Nqckc</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Orthner, H.R ; Roth, P</creator><creatorcontrib>Orthner, H.R ; Roth, P</creatorcontrib><description>Nanometer-sized iron oxide powder was prepared by reaction of iron pentacarbonyl (Fe(CO)5) and oxygen in a gas phase reactor. X-ray diffraction and differential thermal analysis revealed that depending on the reaction temperature α-Fe2O3 (temperature&gt;600°C) or the thermodynamically less stable γ-Fe2O3 (temperature&lt;600°C) was formed. The surface area of the γ-Fe2O3 was in the range 100–240m2g−1. By reducing the reaction pressure, the surface area of the powders produced was increased. High precursor concentrations also favored the formation of powders with higher surface areas. While the pressure effect can be explained by the growth time of the particles, the slower particle growth at higher initial Fe(CO)5 concentration is unexpected and cannot be explained by diffusion-controlled particle coagulation. Transmission electron microscopy of γ-Fe2O3 revealed in accordance with area measurements primary particle diameters below 10nm.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/S0254-0584(02)00228-6</identifier><identifier>CODEN: MCHPDR</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Flow reactor ; Growth mechanism ; Iron oxide ; Materials science ; Materials synthesis; materials processing ; Physics ; Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation ; Sintering</subject><ispartof>Materials chemistry and physics, 2003-02, Vol.78 (2), p.453-458</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0254-0584(02)00228-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14435771$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Orthner, H.R</creatorcontrib><creatorcontrib>Roth, P</creatorcontrib><title>Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics</title><title>Materials chemistry and physics</title><description>Nanometer-sized iron oxide powder was prepared by reaction of iron pentacarbonyl (Fe(CO)5) and oxygen in a gas phase reactor. X-ray diffraction and differential thermal analysis revealed that depending on the reaction temperature α-Fe2O3 (temperature&gt;600°C) or the thermodynamically less stable γ-Fe2O3 (temperature&lt;600°C) was formed. The surface area of the γ-Fe2O3 was in the range 100–240m2g−1. By reducing the reaction pressure, the surface area of the powders produced was increased. High precursor concentrations also favored the formation of powders with higher surface areas. While the pressure effect can be explained by the growth time of the particles, the slower particle growth at higher initial Fe(CO)5 concentration is unexpected and cannot be explained by diffusion-controlled particle coagulation. Transmission electron microscopy of γ-Fe2O3 revealed in accordance with area measurements primary particle diameters below 10nm.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Flow reactor</subject><subject>Growth mechanism</subject><subject>Iron oxide</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Physics</subject><subject>Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation</subject><subject>Sintering</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKs_QchG0MXovUnm5UaktCoUXNh9iHnQyHQyJoO1_96Ztrg6m3M-7v0IuUa4R8Di4QNYLjLIK3EL7A6AsSorTsgEq7LOOEd2Sib_lXNykdIXAJaIfEK-FyFuVO9DS4OjPo75642lXdgaG6lvqaLr0Gdb1TTUNWFLo1W6D_GRzp2zuh93XQzapkR1aI0fYYkOoCNCr1UcFjb61HudLsmZU02yV8ecktVivpq9Zsv3l7fZ8zKzjNd95ozGPFeasUJwBFa6XBjQ6KDSuRIMuEEhROUcd8hVjaUZhp-sZHWBQvMpuTlgO5W0alxUrfZJdtFvVNzJYcvzssSh93To2eGWH2-jTNrbVlvj4_CdNMFLBDmKlnvRcrQogcm9aFnwP_Nqckc</recordid><startdate>20030217</startdate><enddate>20030217</enddate><creator>Orthner, H.R</creator><creator>Roth, P</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope></search><sort><creationdate>20030217</creationdate><title>Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics</title><author>Orthner, H.R ; Roth, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e239t-fdc155ac226431027f54d0c1f08c5a4203d14448ff3f13a917de23b2729614c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Flow reactor</topic><topic>Growth mechanism</topic><topic>Iron oxide</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Physics</topic><topic>Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation</topic><topic>Sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orthner, H.R</creatorcontrib><creatorcontrib>Roth, P</creatorcontrib><collection>Pascal-Francis</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orthner, H.R</au><au>Roth, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics</atitle><jtitle>Materials chemistry and physics</jtitle><date>2003-02-17</date><risdate>2003</risdate><volume>78</volume><issue>2</issue><spage>453</spage><epage>458</epage><pages>453-458</pages><issn>0254-0584</issn><eissn>1879-3312</eissn><coden>MCHPDR</coden><abstract>Nanometer-sized iron oxide powder was prepared by reaction of iron pentacarbonyl (Fe(CO)5) and oxygen in a gas phase reactor. X-ray diffraction and differential thermal analysis revealed that depending on the reaction temperature α-Fe2O3 (temperature&gt;600°C) or the thermodynamically less stable γ-Fe2O3 (temperature&lt;600°C) was formed. The surface area of the γ-Fe2O3 was in the range 100–240m2g−1. By reducing the reaction pressure, the surface area of the powders produced was increased. High precursor concentrations also favored the formation of powders with higher surface areas. While the pressure effect can be explained by the growth time of the particles, the slower particle growth at higher initial Fe(CO)5 concentration is unexpected and cannot be explained by diffusion-controlled particle coagulation. Transmission electron microscopy of γ-Fe2O3 revealed in accordance with area measurements primary particle diameters below 10nm.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0254-0584(02)00228-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2003-02, Vol.78 (2), p.453-458
issn 0254-0584
1879-3312
language eng
recordid cdi_pascalfrancis_primary_14435771
source Elsevier ScienceDirect Journals Complete
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Flow reactor
Growth mechanism
Iron oxide
Materials science
Materials synthesis
materials processing
Physics
Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation
Sintering
title Formation of iron oxide powder in a hot-wall flow reactor: Effect of process conditions on powder characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20iron%20oxide%20powder%20in%20a%20hot-wall%20flow%20reactor:%20Effect%20of%20process%20conditions%20on%20powder%20characteristics&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Orthner,%20H.R&rft.date=2003-02-17&rft.volume=78&rft.issue=2&rft.spage=453&rft.epage=458&rft.pages=453-458&rft.issn=0254-0584&rft.eissn=1879-3312&rft.coden=MCHPDR&rft_id=info:doi/10.1016/S0254-0584(02)00228-6&rft_dat=%3Celsevier_pasca%3ES0254058402002286%3C/elsevier_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0254058402002286&rfr_iscdi=true