Digital correlation microwave polarimetry: analysis and demonstration

The design, analysis, and demonstration of a digital-correlation microwave polarimeter for use in Earth remote sensing is presented. The authors begin with an analysis of a three-level digital correlator and develop the correlator transfer function and radiometric sensitivity. A fifth-order polynomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2001-11, Vol.39 (11), p.2392-2410
Hauptverfasser: Piepmeier, J.R., Gasiewski, A.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design, analysis, and demonstration of a digital-correlation microwave polarimeter for use in Earth remote sensing is presented. The authors begin with an analysis of a three-level digital correlator and develop the correlator transfer function and radiometric sensitivity. A fifth-order polynomial regression is derived for inverting the digital correlation coefficient into the analog statistic. In addition, the effects of quantizer threshold asymmetry and hysteresis are discussed. A two-look unpolarized calibration scheme is developed for identifying correlation offsets. The developed theory and calibration method are verified using a 10.7 GHz and a 37.0 GHz polarimeter. The polarimeters are based upon 1-GS/s three-level digital correlators and measure the first three Stokes parameters. Through experiment, the radiometric sensitivity is shown to approach the theoretical as derived earlier in the paper and the two-look unpolarized calibration method is successfully compared with results using a polarimetric scheme. Finally, sample data from an aircraft experiment demonstrates that the polarimeter is highly useful for ocean wind-vector measurement.
ISSN:0196-2892
1558-0644
DOI:10.1109/36.964976