The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves
We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields, which is efficient for curves with trace of Frobeni...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | |
container_start_page | 118 |
container_title | |
container_volume | 2286 |
creator | Garefalakis, Theodoulos |
description | We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields, which is efficient for curves with trace of Frobenius congruent to 2modulo the order of the base point. The reduction is as simple to construct as that of Menezes, Okamoto, and Vanstone [16], and is provably equivalent to that of Frey and Rück [10]. |
doi_str_mv | 10.1007/3-540-45995-2_15 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14056491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072916_22_131</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-34bf0df3b65d2f69075aedfaeaa5981244f954be03f9e8bea0cf3b18dcf4ed953</originalsourceid><addsrcrecordid>eNpFkM1LxDAQxeMnLuvePebisZp0krQ5yrquwoIiiseQthM32m1rUgX9682q4FwG3rz3YH6EnHB2xhkrziGTgmVCai2z3HC5Q2a6KCGJP1q5SyZccZ4BCL33fwPBmN4nEwYsz3Qh4JBMtNIKFNfiiMxifGFpIBcAMCH3D2ukS-ww2NZ_YUOf0Lf0zvrgu2dqu4aOyXDpYx1wRLrqn23w43pD70JftbihfUcXbeuH0dd0_h4-MB6TA2fbiLO_PSWPV4uH-XW2ul3ezC9W2ZCrcsxAVI41Diolm9wpzQppsXEWrZW65LkQTktRIQOnsazQsjqZednUTmCjJUzJ6W_vYGNtWxdsV_tohuA3NnwaLphUQvPkO_v1xWH7FAZT9f1rNJyZLWgDJnEzP1DNFnQKwF9x6N_eMY4Gt4kauzFRqtd2GDFEA6zINVcmTyHg8A38n3to</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072916_22_131</pqid></control><display><type>book_chapter</type><title>The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves</title><source>Springer Books</source><creator>Garefalakis, Theodoulos</creator><contributor>Rajsbaum, Sergio ; Rajsbaum, Sergio</contributor><creatorcontrib>Garefalakis, Theodoulos ; Rajsbaum, Sergio ; Rajsbaum, Sergio</creatorcontrib><description>We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields, which is efficient for curves with trace of Frobenius congruent to 2modulo the order of the base point. The reduction is as simple to construct as that of Menezes, Okamoto, and Vanstone [16], and is provably equivalent to that of Frey and Rück [10].</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540434009</identifier><identifier>ISBN: 3540434003</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540459958</identifier><identifier>EISBN: 3540459952</identifier><identifier>DOI: 10.1007/3-540-45995-2_15</identifier><identifier>OCLC: 969636194</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Cryptography ; Discrete Logarithm ; Elliptic Curf ; Elliptic Curve ; Elliptic Curve Cryptography ; Exact sciences and technology ; Information, signal and communications theory ; Prime Order ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>LATIN 2002: Theoretical Informatics, 2002, Vol.2286, p.118-130</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072916-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45995-2_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45995-2_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14056491$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Rajsbaum, Sergio</contributor><contributor>Rajsbaum, Sergio</contributor><creatorcontrib>Garefalakis, Theodoulos</creatorcontrib><title>The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves</title><title>LATIN 2002: Theoretical Informatics</title><description>We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields, which is efficient for curves with trace of Frobenius congruent to 2modulo the order of the base point. The reduction is as simple to construct as that of Menezes, Okamoto, and Vanstone [16], and is provably equivalent to that of Frey and Rück [10].</description><subject>Applied sciences</subject><subject>Cryptography</subject><subject>Discrete Logarithm</subject><subject>Elliptic Curf</subject><subject>Elliptic Curve</subject><subject>Elliptic Curve Cryptography</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Prime Order</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540434009</isbn><isbn>3540434003</isbn><isbn>9783540459958</isbn><isbn>3540459952</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkM1LxDAQxeMnLuvePebisZp0krQ5yrquwoIiiseQthM32m1rUgX9682q4FwG3rz3YH6EnHB2xhkrziGTgmVCai2z3HC5Q2a6KCGJP1q5SyZccZ4BCL33fwPBmN4nEwYsz3Qh4JBMtNIKFNfiiMxifGFpIBcAMCH3D2ukS-ww2NZ_YUOf0Lf0zvrgu2dqu4aOyXDpYx1wRLrqn23w43pD70JftbihfUcXbeuH0dd0_h4-MB6TA2fbiLO_PSWPV4uH-XW2ul3ezC9W2ZCrcsxAVI41Diolm9wpzQppsXEWrZW65LkQTktRIQOnsazQsjqZednUTmCjJUzJ6W_vYGNtWxdsV_tohuA3NnwaLphUQvPkO_v1xWH7FAZT9f1rNJyZLWgDJnEzP1DNFnQKwF9x6N_eMY4Gt4kauzFRqtd2GDFEA6zINVcmTyHg8A38n3to</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Garefalakis, Theodoulos</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves</title><author>Garefalakis, Theodoulos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-34bf0df3b65d2f69075aedfaeaa5981244f954be03f9e8bea0cf3b18dcf4ed953</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Cryptography</topic><topic>Discrete Logarithm</topic><topic>Elliptic Curf</topic><topic>Elliptic Curve</topic><topic>Elliptic Curve Cryptography</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Prime Order</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garefalakis, Theodoulos</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garefalakis, Theodoulos</au><au>Rajsbaum, Sergio</au><au>Rajsbaum, Sergio</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves</atitle><btitle>LATIN 2002: Theoretical Informatics</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2286</volume><spage>118</spage><epage>130</epage><pages>118-130</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540434009</isbn><isbn>3540434003</isbn><eisbn>9783540459958</eisbn><eisbn>3540459952</eisbn><abstract>We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields, which is efficient for curves with trace of Frobenius congruent to 2modulo the order of the base point. The reduction is as simple to construct as that of Menezes, Okamoto, and Vanstone [16], and is provably equivalent to that of Frey and Rück [10].</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45995-2_15</doi><oclcid>969636194</oclcid><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | LATIN 2002: Theoretical Informatics, 2002, Vol.2286, p.118-130 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14056491 |
source | Springer Books |
subjects | Applied sciences Cryptography Discrete Logarithm Elliptic Curf Elliptic Curve Elliptic Curve Cryptography Exact sciences and technology Information, signal and communications theory Prime Order Signal and communications theory Telecommunications and information theory |
title | The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=The%20Generalized%20Weil%20Pairing%20and%20the%20Discrete%20Logarithm%20Problem%20on%20Elliptic%20Curves&rft.btitle=LATIN%202002:%20Theoretical%20Informatics&rft.au=Garefalakis,%20Theodoulos&rft.date=2002&rft.volume=2286&rft.spage=118&rft.epage=130&rft.pages=118-130&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540434009&rft.isbn_list=3540434003&rft_id=info:doi/10.1007/3-540-45995-2_15&rft_dat=%3Cproquest_pasca%3EEBC3072916_22_131%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540459958&rft.eisbn_list=3540459952&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072916_22_131&rft_id=info:pmid/&rfr_iscdi=true |