The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves

We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields, which is efficient for curves with trace of Frobeni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Garefalakis, Theodoulos
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue
container_start_page 118
container_title
container_volume 2286
creator Garefalakis, Theodoulos
description We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields, which is efficient for curves with trace of Frobenius congruent to 2modulo the order of the base point. The reduction is as simple to construct as that of Menezes, Okamoto, and Vanstone [16], and is provably equivalent to that of Frey and Rück [10].
doi_str_mv 10.1007/3-540-45995-2_15
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14056491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072916_22_131</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-34bf0df3b65d2f69075aedfaeaa5981244f954be03f9e8bea0cf3b18dcf4ed953</originalsourceid><addsrcrecordid>eNpFkM1LxDAQxeMnLuvePebisZp0krQ5yrquwoIiiseQthM32m1rUgX9682q4FwG3rz3YH6EnHB2xhkrziGTgmVCai2z3HC5Q2a6KCGJP1q5SyZccZ4BCL33fwPBmN4nEwYsz3Qh4JBMtNIKFNfiiMxifGFpIBcAMCH3D2ukS-ww2NZ_YUOf0Lf0zvrgu2dqu4aOyXDpYx1wRLrqn23w43pD70JftbihfUcXbeuH0dd0_h4-MB6TA2fbiLO_PSWPV4uH-XW2ul3ezC9W2ZCrcsxAVI41Diolm9wpzQppsXEWrZW65LkQTktRIQOnsazQsjqZednUTmCjJUzJ6W_vYGNtWxdsV_tohuA3NnwaLphUQvPkO_v1xWH7FAZT9f1rNJyZLWgDJnEzP1DNFnQKwF9x6N_eMY4Gt4kauzFRqtd2GDFEA6zINVcmTyHg8A38n3to</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072916_22_131</pqid></control><display><type>book_chapter</type><title>The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves</title><source>Springer Books</source><creator>Garefalakis, Theodoulos</creator><contributor>Rajsbaum, Sergio ; Rajsbaum, Sergio</contributor><creatorcontrib>Garefalakis, Theodoulos ; Rajsbaum, Sergio ; Rajsbaum, Sergio</creatorcontrib><description>We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields, which is efficient for curves with trace of Frobenius congruent to 2modulo the order of the base point. The reduction is as simple to construct as that of Menezes, Okamoto, and Vanstone [16], and is provably equivalent to that of Frey and Rück [10].</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540434009</identifier><identifier>ISBN: 3540434003</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540459958</identifier><identifier>EISBN: 3540459952</identifier><identifier>DOI: 10.1007/3-540-45995-2_15</identifier><identifier>OCLC: 969636194</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Cryptography ; Discrete Logarithm ; Elliptic Curf ; Elliptic Curve ; Elliptic Curve Cryptography ; Exact sciences and technology ; Information, signal and communications theory ; Prime Order ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>LATIN 2002: Theoretical Informatics, 2002, Vol.2286, p.118-130</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072916-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45995-2_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45995-2_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14056491$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Rajsbaum, Sergio</contributor><contributor>Rajsbaum, Sergio</contributor><creatorcontrib>Garefalakis, Theodoulos</creatorcontrib><title>The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves</title><title>LATIN 2002: Theoretical Informatics</title><description>We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields, which is efficient for curves with trace of Frobenius congruent to 2modulo the order of the base point. The reduction is as simple to construct as that of Menezes, Okamoto, and Vanstone [16], and is provably equivalent to that of Frey and Rück [10].</description><subject>Applied sciences</subject><subject>Cryptography</subject><subject>Discrete Logarithm</subject><subject>Elliptic Curf</subject><subject>Elliptic Curve</subject><subject>Elliptic Curve Cryptography</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Prime Order</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540434009</isbn><isbn>3540434003</isbn><isbn>9783540459958</isbn><isbn>3540459952</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkM1LxDAQxeMnLuvePebisZp0krQ5yrquwoIiiseQthM32m1rUgX9682q4FwG3rz3YH6EnHB2xhkrziGTgmVCai2z3HC5Q2a6KCGJP1q5SyZccZ4BCL33fwPBmN4nEwYsz3Qh4JBMtNIKFNfiiMxifGFpIBcAMCH3D2ukS-ww2NZ_YUOf0Lf0zvrgu2dqu4aOyXDpYx1wRLrqn23w43pD70JftbihfUcXbeuH0dd0_h4-MB6TA2fbiLO_PSWPV4uH-XW2ul3ezC9W2ZCrcsxAVI41Diolm9wpzQppsXEWrZW65LkQTktRIQOnsazQsjqZednUTmCjJUzJ6W_vYGNtWxdsV_tohuA3NnwaLphUQvPkO_v1xWH7FAZT9f1rNJyZLWgDJnEzP1DNFnQKwF9x6N_eMY4Gt4kauzFRqtd2GDFEA6zINVcmTyHg8A38n3to</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Garefalakis, Theodoulos</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves</title><author>Garefalakis, Theodoulos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-34bf0df3b65d2f69075aedfaeaa5981244f954be03f9e8bea0cf3b18dcf4ed953</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Cryptography</topic><topic>Discrete Logarithm</topic><topic>Elliptic Curf</topic><topic>Elliptic Curve</topic><topic>Elliptic Curve Cryptography</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Prime Order</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garefalakis, Theodoulos</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garefalakis, Theodoulos</au><au>Rajsbaum, Sergio</au><au>Rajsbaum, Sergio</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves</atitle><btitle>LATIN 2002: Theoretical Informatics</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2286</volume><spage>118</spage><epage>130</epage><pages>118-130</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540434009</isbn><isbn>3540434003</isbn><eisbn>9783540459958</eisbn><eisbn>3540459952</eisbn><abstract>We review the construction of a generalization of the Weil pairing, which is non-degenerate and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic curves to the discrete logarithm problem in finite fields, which is efficient for curves with trace of Frobenius congruent to 2modulo the order of the base point. The reduction is as simple to construct as that of Menezes, Okamoto, and Vanstone [16], and is provably equivalent to that of Frey and Rück [10].</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45995-2_15</doi><oclcid>969636194</oclcid><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof LATIN 2002: Theoretical Informatics, 2002, Vol.2286, p.118-130
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14056491
source Springer Books
subjects Applied sciences
Cryptography
Discrete Logarithm
Elliptic Curf
Elliptic Curve
Elliptic Curve Cryptography
Exact sciences and technology
Information, signal and communications theory
Prime Order
Signal and communications theory
Telecommunications and information theory
title The Generalized Weil Pairing and the Discrete Logarithm Problem on Elliptic Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=The%20Generalized%20Weil%20Pairing%20and%20the%20Discrete%20Logarithm%20Problem%20on%20Elliptic%20Curves&rft.btitle=LATIN%202002:%20Theoretical%20Informatics&rft.au=Garefalakis,%20Theodoulos&rft.date=2002&rft.volume=2286&rft.spage=118&rft.epage=130&rft.pages=118-130&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540434009&rft.isbn_list=3540434003&rft_id=info:doi/10.1007/3-540-45995-2_15&rft_dat=%3Cproquest_pasca%3EEBC3072916_22_131%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540459958&rft.eisbn_list=3540459952&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072916_22_131&rft_id=info:pmid/&rfr_iscdi=true