Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification
Biometrics is the field that differentiates among various people based on their unique biological and physiological patterns such as retina, finger prints, DNA and keyboard typing patterns to name a few. Keystroke Dynamics is a physiological biometric that measures the unique typing rhythm and caden...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | |
container_start_page | 460 |
container_title | |
container_volume | 2313 |
creator | GUTIERREZ, Francisco J LERMA-RASCON, Margarita M SALGADO-GARZA, Luis R CANTU, Francisco J |
description | Biometrics is the field that differentiates among various people based on their unique biological and physiological patterns such as retina, finger prints, DNA and keyboard typing patterns to name a few. Keystroke Dynamics is a physiological biometric that measures the unique typing rhythm and cadence of a computer keyboard user. This paper presents a Data Mining-based Keystroke Dynamics application for identity verification, and it reports the results of experiments comparing different approaches to Keystroke Dynamics. The methods compared were Decision Trees, a Naïve Bayesian Classifier, Memory Based Learning, and statistics-based Keystroke Dynamics. |
doi_str_mv | 10.1007/3-540-46016-0_48 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14056163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072946_54_473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2308-1d34d43745c53d0338ae76077b8923d2f23a4248756bc0b7d0944e32793d3ba23</originalsourceid><addsrcrecordid>eNpNUT1vFDEUNARQTuF6SjeUDs9-3vWajlzIh5KIBmgtr-1NTO7Wi22K-_f4kkjwmifNvBlp3hDygcMpB1CfkHUSmOyB9wyMHF6RtVYDNvAJ06_JivecM0Spj_5xKFWn3pAVIAimlcR3ZKW7oROgFR6TdSm_oA0KOXC9IstZTLtQc3SF2tnTc1stvYtznO8_003aLTbHkmaapv8pdmZL8PQm7EvN6THQ8_1sdwePu1Afki90Sple-zDXWPf0Z8hxis7WmOb35O1ktyWsX_YJ-XHx9fvmit1-u7zefLllTiAMjHuUXqKSnevQA-Jgg-pBqXHQAr2YBFrZMqiuHx2MyoOWMqBQGj2OVuAJ-fjsu9ji7HbKdnaxmCXHnc17wyV0Pe-x3Z0-35VGzfchmzGlx2I4mEMNBk37qnl6uTnU0AT4YpzT7z-hVBMOCteyZrt1D3apIReDoISWfVMbqRD_AkAXg80</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072946_54_473</pqid></control><display><type>book_chapter</type><title>Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification</title><source>Springer Books</source><creator>GUTIERREZ, Francisco J ; LERMA-RASCON, Margarita M ; SALGADO-GARZA, Luis R ; CANTU, Francisco J</creator><contributor>Coello Coello, Carlos ; Sucar, Luis E ; Albornoz, Alvaro de ; Battistutti, Osvaldo C ; de Albornoz, Alvaro ; Sucar, Luis Enrique ; Battistutti, Osvaldo Cairó ; Coello Coello, Carlos A.</contributor><creatorcontrib>GUTIERREZ, Francisco J ; LERMA-RASCON, Margarita M ; SALGADO-GARZA, Luis R ; CANTU, Francisco J ; Coello Coello, Carlos ; Sucar, Luis E ; Albornoz, Alvaro de ; Battistutti, Osvaldo C ; de Albornoz, Alvaro ; Sucar, Luis Enrique ; Battistutti, Osvaldo Cairó ; Coello Coello, Carlos A.</creatorcontrib><description>Biometrics is the field that differentiates among various people based on their unique biological and physiological patterns such as retina, finger prints, DNA and keyboard typing patterns to name a few. Keystroke Dynamics is a physiological biometric that measures the unique typing rhythm and cadence of a computer keyboard user. This paper presents a Data Mining-based Keystroke Dynamics application for identity verification, and it reports the results of experiments comparing different approaches to Keystroke Dynamics. The methods compared were Decision Trees, a Naïve Bayesian Classifier, Memory Based Learning, and statistics-based Keystroke Dynamics.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540434757</identifier><identifier>ISBN: 3540434755</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540460169</identifier><identifier>EISBN: 3540460160</identifier><identifier>DOI: 10.1007/3-540-46016-0_48</identifier><identifier>OCLC: 958520973</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Computer science; control theory; systems ; Computerized, statistical medical data processing and models in biomedicine ; Data Mining ; Data Mining Technique ; Exact sciences and technology ; Goal Variable ; Keystroke Dynamics ; Learning and adaptive systems ; Medical sciences ; Models and simulation ; Online Mode</subject><ispartof>Lecture notes in computer science, 2002, Vol.2313, p.460-469</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2308-1d34d43745c53d0338ae76077b8923d2f23a4248756bc0b7d0944e32793d3ba23</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072946-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-46016-0_48$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-46016-0_48$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14056163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Coello Coello, Carlos</contributor><contributor>Sucar, Luis E</contributor><contributor>Albornoz, Alvaro de</contributor><contributor>Battistutti, Osvaldo C</contributor><contributor>de Albornoz, Alvaro</contributor><contributor>Sucar, Luis Enrique</contributor><contributor>Battistutti, Osvaldo Cairó</contributor><contributor>Coello Coello, Carlos A.</contributor><creatorcontrib>GUTIERREZ, Francisco J</creatorcontrib><creatorcontrib>LERMA-RASCON, Margarita M</creatorcontrib><creatorcontrib>SALGADO-GARZA, Luis R</creatorcontrib><creatorcontrib>CANTU, Francisco J</creatorcontrib><title>Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification</title><title>Lecture notes in computer science</title><description>Biometrics is the field that differentiates among various people based on their unique biological and physiological patterns such as retina, finger prints, DNA and keyboard typing patterns to name a few. Keystroke Dynamics is a physiological biometric that measures the unique typing rhythm and cadence of a computer keyboard user. This paper presents a Data Mining-based Keystroke Dynamics application for identity verification, and it reports the results of experiments comparing different approaches to Keystroke Dynamics. The methods compared were Decision Trees, a Naïve Bayesian Classifier, Memory Based Learning, and statistics-based Keystroke Dynamics.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Data Mining</subject><subject>Data Mining Technique</subject><subject>Exact sciences and technology</subject><subject>Goal Variable</subject><subject>Keystroke Dynamics</subject><subject>Learning and adaptive systems</subject><subject>Medical sciences</subject><subject>Models and simulation</subject><subject>Online Mode</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540434757</isbn><isbn>3540434755</isbn><isbn>9783540460169</isbn><isbn>3540460160</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNUT1vFDEUNARQTuF6SjeUDs9-3vWajlzIh5KIBmgtr-1NTO7Wi22K-_f4kkjwmifNvBlp3hDygcMpB1CfkHUSmOyB9wyMHF6RtVYDNvAJ06_JivecM0Spj_5xKFWn3pAVIAimlcR3ZKW7oROgFR6TdSm_oA0KOXC9IstZTLtQc3SF2tnTc1stvYtznO8_003aLTbHkmaapv8pdmZL8PQm7EvN6THQ8_1sdwePu1Afki90Sple-zDXWPf0Z8hxis7WmOb35O1ktyWsX_YJ-XHx9fvmit1-u7zefLllTiAMjHuUXqKSnevQA-Jgg-pBqXHQAr2YBFrZMqiuHx2MyoOWMqBQGj2OVuAJ-fjsu9ji7HbKdnaxmCXHnc17wyV0Pe-x3Z0-35VGzfchmzGlx2I4mEMNBk37qnl6uTnU0AT4YpzT7z-hVBMOCteyZrt1D3apIReDoISWfVMbqRD_AkAXg80</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>GUTIERREZ, Francisco J</creator><creator>LERMA-RASCON, Margarita M</creator><creator>SALGADO-GARZA, Luis R</creator><creator>CANTU, Francisco J</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification</title><author>GUTIERREZ, Francisco J ; LERMA-RASCON, Margarita M ; SALGADO-GARZA, Luis R ; CANTU, Francisco J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2308-1d34d43745c53d0338ae76077b8923d2f23a4248756bc0b7d0944e32793d3ba23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Data Mining</topic><topic>Data Mining Technique</topic><topic>Exact sciences and technology</topic><topic>Goal Variable</topic><topic>Keystroke Dynamics</topic><topic>Learning and adaptive systems</topic><topic>Medical sciences</topic><topic>Models and simulation</topic><topic>Online Mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUTIERREZ, Francisco J</creatorcontrib><creatorcontrib>LERMA-RASCON, Margarita M</creatorcontrib><creatorcontrib>SALGADO-GARZA, Luis R</creatorcontrib><creatorcontrib>CANTU, Francisco J</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUTIERREZ, Francisco J</au><au>LERMA-RASCON, Margarita M</au><au>SALGADO-GARZA, Luis R</au><au>CANTU, Francisco J</au><au>Coello Coello, Carlos</au><au>Sucar, Luis E</au><au>Albornoz, Alvaro de</au><au>Battistutti, Osvaldo C</au><au>de Albornoz, Alvaro</au><au>Sucar, Luis Enrique</au><au>Battistutti, Osvaldo Cairó</au><au>Coello Coello, Carlos A.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2313</volume><spage>460</spage><epage>469</epage><pages>460-469</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540434757</isbn><isbn>3540434755</isbn><eisbn>9783540460169</eisbn><eisbn>3540460160</eisbn><abstract>Biometrics is the field that differentiates among various people based on their unique biological and physiological patterns such as retina, finger prints, DNA and keyboard typing patterns to name a few. Keystroke Dynamics is a physiological biometric that measures the unique typing rhythm and cadence of a computer keyboard user. This paper presents a Data Mining-based Keystroke Dynamics application for identity verification, and it reports the results of experiments comparing different approaches to Keystroke Dynamics. The methods compared were Decision Trees, a Naïve Bayesian Classifier, Memory Based Learning, and statistics-based Keystroke Dynamics.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-46016-0_48</doi><oclcid>958520973</oclcid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2002, Vol.2313, p.460-469 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14056163 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Biological and medical sciences Computer science control theory systems Computerized, statistical medical data processing and models in biomedicine Data Mining Data Mining Technique Exact sciences and technology Goal Variable Keystroke Dynamics Learning and adaptive systems Medical sciences Models and simulation Online Mode |
title | Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Biometrics%20and%20Data%20Mining:%20Comparison%20of%20Data%20Mining-Based%20Keystroke%20Dynamics%20Methods%20for%20Identity%20Verification&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=GUTIERREZ,%20Francisco%20J&rft.date=2002&rft.volume=2313&rft.spage=460&rft.epage=469&rft.pages=460-469&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540434757&rft.isbn_list=3540434755&rft_id=info:doi/10.1007/3-540-46016-0_48&rft_dat=%3Cproquest_pasca%3EEBC3072946_54_473%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540460169&rft.eisbn_list=3540460160&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072946_54_473&rft_id=info:pmid/&rfr_iscdi=true |