Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification

Biometrics is the field that differentiates among various people based on their unique biological and physiological patterns such as retina, finger prints, DNA and keyboard typing patterns to name a few. Keystroke Dynamics is a physiological biometric that measures the unique typing rhythm and caden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUTIERREZ, Francisco J, LERMA-RASCON, Margarita M, SALGADO-GARZA, Luis R, CANTU, Francisco J
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue
container_start_page 460
container_title
container_volume 2313
creator GUTIERREZ, Francisco J
LERMA-RASCON, Margarita M
SALGADO-GARZA, Luis R
CANTU, Francisco J
description Biometrics is the field that differentiates among various people based on their unique biological and physiological patterns such as retina, finger prints, DNA and keyboard typing patterns to name a few. Keystroke Dynamics is a physiological biometric that measures the unique typing rhythm and cadence of a computer keyboard user. This paper presents a Data Mining-based Keystroke Dynamics application for identity verification, and it reports the results of experiments comparing different approaches to Keystroke Dynamics. The methods compared were Decision Trees, a Naïve Bayesian Classifier, Memory Based Learning, and statistics-based Keystroke Dynamics.
doi_str_mv 10.1007/3-540-46016-0_48
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14056163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072946_54_473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2308-1d34d43745c53d0338ae76077b8923d2f23a4248756bc0b7d0944e32793d3ba23</originalsourceid><addsrcrecordid>eNpNUT1vFDEUNARQTuF6SjeUDs9-3vWajlzIh5KIBmgtr-1NTO7Wi22K-_f4kkjwmifNvBlp3hDygcMpB1CfkHUSmOyB9wyMHF6RtVYDNvAJ06_JivecM0Spj_5xKFWn3pAVIAimlcR3ZKW7oROgFR6TdSm_oA0KOXC9IstZTLtQc3SF2tnTc1stvYtznO8_003aLTbHkmaapv8pdmZL8PQm7EvN6THQ8_1sdwePu1Afki90Sple-zDXWPf0Z8hxis7WmOb35O1ktyWsX_YJ-XHx9fvmit1-u7zefLllTiAMjHuUXqKSnevQA-Jgg-pBqXHQAr2YBFrZMqiuHx2MyoOWMqBQGj2OVuAJ-fjsu9ji7HbKdnaxmCXHnc17wyV0Pe-x3Z0-35VGzfchmzGlx2I4mEMNBk37qnl6uTnU0AT4YpzT7z-hVBMOCteyZrt1D3apIReDoISWfVMbqRD_AkAXg80</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072946_54_473</pqid></control><display><type>book_chapter</type><title>Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification</title><source>Springer Books</source><creator>GUTIERREZ, Francisco J ; LERMA-RASCON, Margarita M ; SALGADO-GARZA, Luis R ; CANTU, Francisco J</creator><contributor>Coello Coello, Carlos ; Sucar, Luis E ; Albornoz, Alvaro de ; Battistutti, Osvaldo C ; de Albornoz, Alvaro ; Sucar, Luis Enrique ; Battistutti, Osvaldo Cairó ; Coello Coello, Carlos A.</contributor><creatorcontrib>GUTIERREZ, Francisco J ; LERMA-RASCON, Margarita M ; SALGADO-GARZA, Luis R ; CANTU, Francisco J ; Coello Coello, Carlos ; Sucar, Luis E ; Albornoz, Alvaro de ; Battistutti, Osvaldo C ; de Albornoz, Alvaro ; Sucar, Luis Enrique ; Battistutti, Osvaldo Cairó ; Coello Coello, Carlos A.</creatorcontrib><description>Biometrics is the field that differentiates among various people based on their unique biological and physiological patterns such as retina, finger prints, DNA and keyboard typing patterns to name a few. Keystroke Dynamics is a physiological biometric that measures the unique typing rhythm and cadence of a computer keyboard user. This paper presents a Data Mining-based Keystroke Dynamics application for identity verification, and it reports the results of experiments comparing different approaches to Keystroke Dynamics. The methods compared were Decision Trees, a Naïve Bayesian Classifier, Memory Based Learning, and statistics-based Keystroke Dynamics.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540434757</identifier><identifier>ISBN: 3540434755</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540460169</identifier><identifier>EISBN: 3540460160</identifier><identifier>DOI: 10.1007/3-540-46016-0_48</identifier><identifier>OCLC: 958520973</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Computer science; control theory; systems ; Computerized, statistical medical data processing and models in biomedicine ; Data Mining ; Data Mining Technique ; Exact sciences and technology ; Goal Variable ; Keystroke Dynamics ; Learning and adaptive systems ; Medical sciences ; Models and simulation ; Online Mode</subject><ispartof>Lecture notes in computer science, 2002, Vol.2313, p.460-469</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2308-1d34d43745c53d0338ae76077b8923d2f23a4248756bc0b7d0944e32793d3ba23</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072946-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-46016-0_48$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-46016-0_48$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14056163$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Coello Coello, Carlos</contributor><contributor>Sucar, Luis E</contributor><contributor>Albornoz, Alvaro de</contributor><contributor>Battistutti, Osvaldo C</contributor><contributor>de Albornoz, Alvaro</contributor><contributor>Sucar, Luis Enrique</contributor><contributor>Battistutti, Osvaldo Cairó</contributor><contributor>Coello Coello, Carlos A.</contributor><creatorcontrib>GUTIERREZ, Francisco J</creatorcontrib><creatorcontrib>LERMA-RASCON, Margarita M</creatorcontrib><creatorcontrib>SALGADO-GARZA, Luis R</creatorcontrib><creatorcontrib>CANTU, Francisco J</creatorcontrib><title>Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification</title><title>Lecture notes in computer science</title><description>Biometrics is the field that differentiates among various people based on their unique biological and physiological patterns such as retina, finger prints, DNA and keyboard typing patterns to name a few. Keystroke Dynamics is a physiological biometric that measures the unique typing rhythm and cadence of a computer keyboard user. This paper presents a Data Mining-based Keystroke Dynamics application for identity verification, and it reports the results of experiments comparing different approaches to Keystroke Dynamics. The methods compared were Decision Trees, a Naïve Bayesian Classifier, Memory Based Learning, and statistics-based Keystroke Dynamics.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Data Mining</subject><subject>Data Mining Technique</subject><subject>Exact sciences and technology</subject><subject>Goal Variable</subject><subject>Keystroke Dynamics</subject><subject>Learning and adaptive systems</subject><subject>Medical sciences</subject><subject>Models and simulation</subject><subject>Online Mode</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540434757</isbn><isbn>3540434755</isbn><isbn>9783540460169</isbn><isbn>3540460160</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNUT1vFDEUNARQTuF6SjeUDs9-3vWajlzIh5KIBmgtr-1NTO7Wi22K-_f4kkjwmifNvBlp3hDygcMpB1CfkHUSmOyB9wyMHF6RtVYDNvAJ06_JivecM0Spj_5xKFWn3pAVIAimlcR3ZKW7oROgFR6TdSm_oA0KOXC9IstZTLtQc3SF2tnTc1stvYtznO8_003aLTbHkmaapv8pdmZL8PQm7EvN6THQ8_1sdwePu1Afki90Sple-zDXWPf0Z8hxis7WmOb35O1ktyWsX_YJ-XHx9fvmit1-u7zefLllTiAMjHuUXqKSnevQA-Jgg-pBqXHQAr2YBFrZMqiuHx2MyoOWMqBQGj2OVuAJ-fjsu9ji7HbKdnaxmCXHnc17wyV0Pe-x3Z0-35VGzfchmzGlx2I4mEMNBk37qnl6uTnU0AT4YpzT7z-hVBMOCteyZrt1D3apIReDoISWfVMbqRD_AkAXg80</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>GUTIERREZ, Francisco J</creator><creator>LERMA-RASCON, Margarita M</creator><creator>SALGADO-GARZA, Luis R</creator><creator>CANTU, Francisco J</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification</title><author>GUTIERREZ, Francisco J ; LERMA-RASCON, Margarita M ; SALGADO-GARZA, Luis R ; CANTU, Francisco J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2308-1d34d43745c53d0338ae76077b8923d2f23a4248756bc0b7d0944e32793d3ba23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Data Mining</topic><topic>Data Mining Technique</topic><topic>Exact sciences and technology</topic><topic>Goal Variable</topic><topic>Keystroke Dynamics</topic><topic>Learning and adaptive systems</topic><topic>Medical sciences</topic><topic>Models and simulation</topic><topic>Online Mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUTIERREZ, Francisco J</creatorcontrib><creatorcontrib>LERMA-RASCON, Margarita M</creatorcontrib><creatorcontrib>SALGADO-GARZA, Luis R</creatorcontrib><creatorcontrib>CANTU, Francisco J</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUTIERREZ, Francisco J</au><au>LERMA-RASCON, Margarita M</au><au>SALGADO-GARZA, Luis R</au><au>CANTU, Francisco J</au><au>Coello Coello, Carlos</au><au>Sucar, Luis E</au><au>Albornoz, Alvaro de</au><au>Battistutti, Osvaldo C</au><au>de Albornoz, Alvaro</au><au>Sucar, Luis Enrique</au><au>Battistutti, Osvaldo Cairó</au><au>Coello Coello, Carlos A.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2313</volume><spage>460</spage><epage>469</epage><pages>460-469</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540434757</isbn><isbn>3540434755</isbn><eisbn>9783540460169</eisbn><eisbn>3540460160</eisbn><abstract>Biometrics is the field that differentiates among various people based on their unique biological and physiological patterns such as retina, finger prints, DNA and keyboard typing patterns to name a few. Keystroke Dynamics is a physiological biometric that measures the unique typing rhythm and cadence of a computer keyboard user. This paper presents a Data Mining-based Keystroke Dynamics application for identity verification, and it reports the results of experiments comparing different approaches to Keystroke Dynamics. The methods compared were Decision Trees, a Naïve Bayesian Classifier, Memory Based Learning, and statistics-based Keystroke Dynamics.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-46016-0_48</doi><oclcid>958520973</oclcid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2002, Vol.2313, p.460-469
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14056163
source Springer Books
subjects Applied sciences
Artificial intelligence
Biological and medical sciences
Computer science
control theory
systems
Computerized, statistical medical data processing and models in biomedicine
Data Mining
Data Mining Technique
Exact sciences and technology
Goal Variable
Keystroke Dynamics
Learning and adaptive systems
Medical sciences
Models and simulation
Online Mode
title Biometrics and Data Mining: Comparison of Data Mining-Based Keystroke Dynamics Methods for Identity Verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Biometrics%20and%20Data%20Mining:%20Comparison%20of%20Data%20Mining-Based%20Keystroke%20Dynamics%20Methods%20for%20Identity%20Verification&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=GUTIERREZ,%20Francisco%20J&rft.date=2002&rft.volume=2313&rft.spage=460&rft.epage=469&rft.pages=460-469&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540434757&rft.isbn_list=3540434755&rft_id=info:doi/10.1007/3-540-46016-0_48&rft_dat=%3Cproquest_pasca%3EEBC3072946_54_473%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540460169&rft.eisbn_list=3540460160&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072946_54_473&rft_id=info:pmid/&rfr_iscdi=true