Learning Structural Knowledge from the ECG
We tackle the problem of discovering, without the “manual” aid of an expert, implicit relations and temporal constraints from a collection of dated events detected on temporally structured signals. The approach associates tightly signal processing and symbolic learning methods. It is illustrated on...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | |
container_start_page | 288 |
container_title | |
container_volume | 2199 |
creator | Wang, F. Quiniou, R. Carrault, G. Cordier, M. -O. |
description | We tackle the problem of discovering, without the “manual” aid of an expert, implicit relations and temporal constraints from a collection of dated events detected on temporally structured signals. The approach associates tightly signal processing and symbolic learning methods. It is illustrated on learning cardiac arrhythmias from ECGs. |
doi_str_mv | 10.1007/3-540-45497-7_44 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14054640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072526_50_299</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1834-30c5ee8a1bb644d862a04250febb4e1203910cce412e58880510b7c33ce49af13</originalsourceid><addsrcrecordid>eNotUE1PwzAMDZ9ijN059sIFqcOJnaY5omkMxCQOwDlKs3QbbO1IOiH-PdmHD7b03vOT_Ri75TDkAOoBc0mQkyStcmWITtg1JmQPqFPW4wXnOSLpMzbQqtxzQiEV56wHCCLXivCS9bQspeCpXbFBjF-QCgUp4j12P_U2NMtmnr13Yeu6bbCr7LVpf1d-NvdZHdp11i18Nh5NbthFbVfRD46zzz6fxh-j53z6NnkZPU7zDS-RcgQnvS8tr6qCaFYWwqarJNS-qshzAag5OOeJCy_LsgTJoVIOMUHa1hz77O7gu7HR2VUdbOOW0WzCcm3Dn-EEkgqCpBsedDFRzdwHU7XtdzQczC49gyblYfZhmV16aQGPxqH92frYGb_bcL7p0tduYTedD9EgKCFFYSQYoTX-A-pkajE</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072526_50_299</pqid></control><display><type>book_chapter</type><title>Learning Structural Knowledge from the ECG</title><source>Springer Books</source><creator>Wang, F. ; Quiniou, R. ; Carrault, G. ; Cordier, M. -O.</creator><contributor>Maojo, Victor ; Crespo, Jose ; Martin, Fernando ; Martin, Fernando ; Crespo, Jose ; Maojo, Victor</contributor><creatorcontrib>Wang, F. ; Quiniou, R. ; Carrault, G. ; Cordier, M. -O. ; Maojo, Victor ; Crespo, Jose ; Martin, Fernando ; Martin, Fernando ; Crespo, Jose ; Maojo, Victor</creatorcontrib><description>We tackle the problem of discovering, without the “manual” aid of an expert, implicit relations and temporal constraints from a collection of dated events detected on temporally structured signals. The approach associates tightly signal processing and symbolic learning methods. It is illustrated on learning cardiac arrhythmias from ECGs.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540427346</identifier><identifier>ISBN: 3540427341</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540454977</identifier><identifier>EISBN: 9783540454977</identifier><identifier>DOI: 10.1007/3-540-45497-7_44</identifier><identifier>OCLC: 958521585</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Biological and medical sciences ; Implicit Relation ; Inductive Logic Programming ; Medical sciences ; Probabilistic Neural Network ; Symbolic Event ; Temporal Constraint</subject><ispartof>Lecture notes in computer science, 2001, Vol.2199, p.288-294</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072526-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45497-7_44$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45497-7_44$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14054640$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Maojo, Victor</contributor><contributor>Crespo, Jose</contributor><contributor>Martin, Fernando</contributor><contributor>Martin, Fernando</contributor><contributor>Crespo, Jose</contributor><contributor>Maojo, Victor</contributor><creatorcontrib>Wang, F.</creatorcontrib><creatorcontrib>Quiniou, R.</creatorcontrib><creatorcontrib>Carrault, G.</creatorcontrib><creatorcontrib>Cordier, M. -O.</creatorcontrib><title>Learning Structural Knowledge from the ECG</title><title>Lecture notes in computer science</title><description>We tackle the problem of discovering, without the “manual” aid of an expert, implicit relations and temporal constraints from a collection of dated events detected on temporally structured signals. The approach associates tightly signal processing and symbolic learning methods. It is illustrated on learning cardiac arrhythmias from ECGs.</description><subject>Biological and medical sciences</subject><subject>Implicit Relation</subject><subject>Inductive Logic Programming</subject><subject>Medical sciences</subject><subject>Probabilistic Neural Network</subject><subject>Symbolic Event</subject><subject>Temporal Constraint</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540427346</isbn><isbn>3540427341</isbn><isbn>3540454977</isbn><isbn>9783540454977</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUE1PwzAMDZ9ijN059sIFqcOJnaY5omkMxCQOwDlKs3QbbO1IOiH-PdmHD7b03vOT_Ri75TDkAOoBc0mQkyStcmWITtg1JmQPqFPW4wXnOSLpMzbQqtxzQiEV56wHCCLXivCS9bQspeCpXbFBjF-QCgUp4j12P_U2NMtmnr13Yeu6bbCr7LVpf1d-NvdZHdp11i18Nh5NbthFbVfRD46zzz6fxh-j53z6NnkZPU7zDS-RcgQnvS8tr6qCaFYWwqarJNS-qshzAag5OOeJCy_LsgTJoVIOMUHa1hz77O7gu7HR2VUdbOOW0WzCcm3Dn-EEkgqCpBsedDFRzdwHU7XtdzQczC49gyblYfZhmV16aQGPxqH92frYGb_bcL7p0tduYTedD9EgKCFFYSQYoTX-A-pkajE</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Wang, F.</creator><creator>Quiniou, R.</creator><creator>Carrault, G.</creator><creator>Cordier, M. -O.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Learning Structural Knowledge from the ECG</title><author>Wang, F. ; Quiniou, R. ; Carrault, G. ; Cordier, M. -O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1834-30c5ee8a1bb644d862a04250febb4e1203910cce412e58880510b7c33ce49af13</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological and medical sciences</topic><topic>Implicit Relation</topic><topic>Inductive Logic Programming</topic><topic>Medical sciences</topic><topic>Probabilistic Neural Network</topic><topic>Symbolic Event</topic><topic>Temporal Constraint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, F.</creatorcontrib><creatorcontrib>Quiniou, R.</creatorcontrib><creatorcontrib>Carrault, G.</creatorcontrib><creatorcontrib>Cordier, M. -O.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, F.</au><au>Quiniou, R.</au><au>Carrault, G.</au><au>Cordier, M. -O.</au><au>Maojo, Victor</au><au>Crespo, Jose</au><au>Martin, Fernando</au><au>Martin, Fernando</au><au>Crespo, Jose</au><au>Maojo, Victor</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Learning Structural Knowledge from the ECG</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2199</volume><spage>288</spage><epage>294</epage><pages>288-294</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540427346</isbn><isbn>3540427341</isbn><eisbn>3540454977</eisbn><eisbn>9783540454977</eisbn><abstract>We tackle the problem of discovering, without the “manual” aid of an expert, implicit relations and temporal constraints from a collection of dated events detected on temporally structured signals. The approach associates tightly signal processing and symbolic learning methods. It is illustrated on learning cardiac arrhythmias from ECGs.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45497-7_44</doi><oclcid>958521585</oclcid><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2001, Vol.2199, p.288-294 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14054640 |
source | Springer Books |
subjects | Biological and medical sciences Implicit Relation Inductive Logic Programming Medical sciences Probabilistic Neural Network Symbolic Event Temporal Constraint |
title | Learning Structural Knowledge from the ECG |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Learning%20Structural%20Knowledge%20from%20the%20ECG&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Wang,%20F.&rft.date=2001&rft.volume=2199&rft.spage=288&rft.epage=294&rft.pages=288-294&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540427346&rft.isbn_list=3540427341&rft_id=info:doi/10.1007/3-540-45497-7_44&rft_dat=%3Cproquest_pasca%3EEBC3072526_50_299%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540454977&rft.eisbn_list=9783540454977&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072526_50_299&rft_id=info:pmid/&rfr_iscdi=true |