Learning Structural Knowledge from the ECG

We tackle the problem of discovering, without the “manual” aid of an expert, implicit relations and temporal constraints from a collection of dated events detected on temporally structured signals. The approach associates tightly signal processing and symbolic learning methods. It is illustrated on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wang, F., Quiniou, R., Carrault, G., Cordier, M. -O.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue
container_start_page 288
container_title
container_volume 2199
creator Wang, F.
Quiniou, R.
Carrault, G.
Cordier, M. -O.
description We tackle the problem of discovering, without the “manual” aid of an expert, implicit relations and temporal constraints from a collection of dated events detected on temporally structured signals. The approach associates tightly signal processing and symbolic learning methods. It is illustrated on learning cardiac arrhythmias from ECGs.
doi_str_mv 10.1007/3-540-45497-7_44
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14054640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072526_50_299</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1834-30c5ee8a1bb644d862a04250febb4e1203910cce412e58880510b7c33ce49af13</originalsourceid><addsrcrecordid>eNotUE1PwzAMDZ9ijN059sIFqcOJnaY5omkMxCQOwDlKs3QbbO1IOiH-PdmHD7b03vOT_Ri75TDkAOoBc0mQkyStcmWITtg1JmQPqFPW4wXnOSLpMzbQqtxzQiEV56wHCCLXivCS9bQspeCpXbFBjF-QCgUp4j12P_U2NMtmnr13Yeu6bbCr7LVpf1d-NvdZHdp11i18Nh5NbthFbVfRD46zzz6fxh-j53z6NnkZPU7zDS-RcgQnvS8tr6qCaFYWwqarJNS-qshzAag5OOeJCy_LsgTJoVIOMUHa1hz77O7gu7HR2VUdbOOW0WzCcm3Dn-EEkgqCpBsedDFRzdwHU7XtdzQczC49gyblYfZhmV16aQGPxqH92frYGb_bcL7p0tduYTedD9EgKCFFYSQYoTX-A-pkajE</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072526_50_299</pqid></control><display><type>book_chapter</type><title>Learning Structural Knowledge from the ECG</title><source>Springer Books</source><creator>Wang, F. ; Quiniou, R. ; Carrault, G. ; Cordier, M. -O.</creator><contributor>Maojo, Victor ; Crespo, Jose ; Martin, Fernando ; Martin, Fernando ; Crespo, Jose ; Maojo, Victor</contributor><creatorcontrib>Wang, F. ; Quiniou, R. ; Carrault, G. ; Cordier, M. -O. ; Maojo, Victor ; Crespo, Jose ; Martin, Fernando ; Martin, Fernando ; Crespo, Jose ; Maojo, Victor</creatorcontrib><description>We tackle the problem of discovering, without the “manual” aid of an expert, implicit relations and temporal constraints from a collection of dated events detected on temporally structured signals. The approach associates tightly signal processing and symbolic learning methods. It is illustrated on learning cardiac arrhythmias from ECGs.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540427346</identifier><identifier>ISBN: 3540427341</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540454977</identifier><identifier>EISBN: 9783540454977</identifier><identifier>DOI: 10.1007/3-540-45497-7_44</identifier><identifier>OCLC: 958521585</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Biological and medical sciences ; Implicit Relation ; Inductive Logic Programming ; Medical sciences ; Probabilistic Neural Network ; Symbolic Event ; Temporal Constraint</subject><ispartof>Lecture notes in computer science, 2001, Vol.2199, p.288-294</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072526-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45497-7_44$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45497-7_44$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14054640$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Maojo, Victor</contributor><contributor>Crespo, Jose</contributor><contributor>Martin, Fernando</contributor><contributor>Martin, Fernando</contributor><contributor>Crespo, Jose</contributor><contributor>Maojo, Victor</contributor><creatorcontrib>Wang, F.</creatorcontrib><creatorcontrib>Quiniou, R.</creatorcontrib><creatorcontrib>Carrault, G.</creatorcontrib><creatorcontrib>Cordier, M. -O.</creatorcontrib><title>Learning Structural Knowledge from the ECG</title><title>Lecture notes in computer science</title><description>We tackle the problem of discovering, without the “manual” aid of an expert, implicit relations and temporal constraints from a collection of dated events detected on temporally structured signals. The approach associates tightly signal processing and symbolic learning methods. It is illustrated on learning cardiac arrhythmias from ECGs.</description><subject>Biological and medical sciences</subject><subject>Implicit Relation</subject><subject>Inductive Logic Programming</subject><subject>Medical sciences</subject><subject>Probabilistic Neural Network</subject><subject>Symbolic Event</subject><subject>Temporal Constraint</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540427346</isbn><isbn>3540427341</isbn><isbn>3540454977</isbn><isbn>9783540454977</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUE1PwzAMDZ9ijN059sIFqcOJnaY5omkMxCQOwDlKs3QbbO1IOiH-PdmHD7b03vOT_Ri75TDkAOoBc0mQkyStcmWITtg1JmQPqFPW4wXnOSLpMzbQqtxzQiEV56wHCCLXivCS9bQspeCpXbFBjF-QCgUp4j12P_U2NMtmnr13Yeu6bbCr7LVpf1d-NvdZHdp11i18Nh5NbthFbVfRD46zzz6fxh-j53z6NnkZPU7zDS-RcgQnvS8tr6qCaFYWwqarJNS-qshzAag5OOeJCy_LsgTJoVIOMUHa1hz77O7gu7HR2VUdbOOW0WzCcm3Dn-EEkgqCpBsedDFRzdwHU7XtdzQczC49gyblYfZhmV16aQGPxqH92frYGb_bcL7p0tduYTedD9EgKCFFYSQYoTX-A-pkajE</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Wang, F.</creator><creator>Quiniou, R.</creator><creator>Carrault, G.</creator><creator>Cordier, M. -O.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Learning Structural Knowledge from the ECG</title><author>Wang, F. ; Quiniou, R. ; Carrault, G. ; Cordier, M. -O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1834-30c5ee8a1bb644d862a04250febb4e1203910cce412e58880510b7c33ce49af13</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological and medical sciences</topic><topic>Implicit Relation</topic><topic>Inductive Logic Programming</topic><topic>Medical sciences</topic><topic>Probabilistic Neural Network</topic><topic>Symbolic Event</topic><topic>Temporal Constraint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, F.</creatorcontrib><creatorcontrib>Quiniou, R.</creatorcontrib><creatorcontrib>Carrault, G.</creatorcontrib><creatorcontrib>Cordier, M. -O.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, F.</au><au>Quiniou, R.</au><au>Carrault, G.</au><au>Cordier, M. -O.</au><au>Maojo, Victor</au><au>Crespo, Jose</au><au>Martin, Fernando</au><au>Martin, Fernando</au><au>Crespo, Jose</au><au>Maojo, Victor</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Learning Structural Knowledge from the ECG</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2199</volume><spage>288</spage><epage>294</epage><pages>288-294</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540427346</isbn><isbn>3540427341</isbn><eisbn>3540454977</eisbn><eisbn>9783540454977</eisbn><abstract>We tackle the problem of discovering, without the “manual” aid of an expert, implicit relations and temporal constraints from a collection of dated events detected on temporally structured signals. The approach associates tightly signal processing and symbolic learning methods. It is illustrated on learning cardiac arrhythmias from ECGs.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45497-7_44</doi><oclcid>958521585</oclcid><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2001, Vol.2199, p.288-294
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14054640
source Springer Books
subjects Biological and medical sciences
Implicit Relation
Inductive Logic Programming
Medical sciences
Probabilistic Neural Network
Symbolic Event
Temporal Constraint
title Learning Structural Knowledge from the ECG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Learning%20Structural%20Knowledge%20from%20the%20ECG&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Wang,%20F.&rft.date=2001&rft.volume=2199&rft.spage=288&rft.epage=294&rft.pages=288-294&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540427346&rft.isbn_list=3540427341&rft_id=info:doi/10.1007/3-540-45497-7_44&rft_dat=%3Cproquest_pasca%3EEBC3072526_50_299%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540454977&rft.eisbn_list=9783540454977&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072526_50_299&rft_id=info:pmid/&rfr_iscdi=true