N-Version Genetic Programming via Fault Masking
We introduce a new method, N-Version Genetic Programming (NVGP), for building fault tolerant software by building an ensemble of automatically generated modules in such a way as to maximize their collective fault masking ability. The ensemble itself is an example of n-version modular redundancy for...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | |
container_start_page | 172 |
container_title | |
container_volume | 2278 |
creator | Imamura, Kosuke Heckendorn, Robert B. Soule, Terence Foster, James A. |
description | We introduce a new method, N-Version Genetic Programming (NVGP), for building fault tolerant software by building an ensemble of automatically generated modules in such a way as to maximize their collective fault masking ability. The ensemble itself is an example of n-version modular redundancy for fault tolerance, where the output of the ensemble is the most frequent output of n independent modules. By maximizing collective fault masking, NVGP approaches the fault tolerance expected from n version modular redundancy with independent faults in component modules. The ensemble comprises individual modules from a large pool generated with genetic programming, using operators that increase the diversity of the population. Our experimental test problem classified promoter regions in Escherichia coli DNA sequences. For this problem, NVGP reduced the number and variance of errors over single modules produced by GP, with statistical significance. |
doi_str_mv | 10.1007/3-540-45984-7_17 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14054507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071522_23_183</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1837-a11c8e010513151ba127cbd49e1507dc984f66af7c879945144faf45c8a5c50c3</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhM1TRKV3jrlwdOvN2rFzRBUtSOVxAK6W6zolNE2CnSLx73EfEntZaXZnpPkIuQE2AsbkGKngjHJRKE6lBnlChoVUGMW9lp2SBHIAisiLs_8bolRwThKGLKOF5HhJkkIokWV5rq7IMIQvFgcz5EIlZPxMP5wPVdukM9e4vrLpq29X3mw2VbNKfyqTTs227tMnE9ZRuSYXpamDGx73gLxP798mD3T-Mnuc3M1pBwolNQBWOQZMAIKAhYFM2sWSFw4Ek0sbC5R5bkpplSwKLoDz0pRcWGWEFczigNwecjsTrKlLbxpbBd35amP8rwbOBI9J8W90-Avx1Kyc14u2XQcNTO8oatQRit4T0zuK0YDHYN9-b13otds5rGt6b2r7abo-8tDIJERmOkMdC-EfUZFspQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071522_23_183</pqid></control><display><type>book_chapter</type><title>N-Version Genetic Programming via Fault Masking</title><source>Springer Books</source><creator>Imamura, Kosuke ; Heckendorn, Robert B. ; Soule, Terence ; Foster, James A.</creator><contributor>Tezzamanzi, Andra G. B ; Lutton, Evelyne ; Miller, Julian F ; Foster, James A ; Ryan, Conor ; Miller, Julian ; Ryan, Conor ; Tettamanzi, Andrea ; Foster, James A. ; Lutton, Evelyne</contributor><creatorcontrib>Imamura, Kosuke ; Heckendorn, Robert B. ; Soule, Terence ; Foster, James A. ; Tezzamanzi, Andra G. B ; Lutton, Evelyne ; Miller, Julian F ; Foster, James A ; Ryan, Conor ; Miller, Julian ; Ryan, Conor ; Tettamanzi, Andrea ; Foster, James A. ; Lutton, Evelyne</creatorcontrib><description>We introduce a new method, N-Version Genetic Programming (NVGP), for building fault tolerant software by building an ensemble of automatically generated modules in such a way as to maximize their collective fault masking ability. The ensemble itself is an example of n-version modular redundancy for fault tolerance, where the output of the ensemble is the most frequent output of n independent modules. By maximizing collective fault masking, NVGP approaches the fault tolerance expected from n version modular redundancy with independent faults in component modules. The ensemble comprises individual modules from a large pool generated with genetic programming, using operators that increase the diversity of the population. Our experimental test problem classified promoter regions in Escherichia coli DNA sequences. For this problem, NVGP reduced the number and variance of errors over single modules produced by GP, with statistical significance.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540433781</identifier><identifier>ISBN: 3540433783</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540459842</identifier><identifier>EISBN: 3540459847</identifier><identifier>DOI: 10.1007/3-540-45984-7_17</identifier><identifier>OCLC: 958522668</identifier><identifier>LCCallNum: QA76.758</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Component Module ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Fault Tolerant Software ; Genetic Program ; Optimal Linear Combination ; Replacement Candidate</subject><ispartof>Genetic Programming, 2002, Vol.2278, p.172-181</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071522-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45984-7_17$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45984-7_17$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14054507$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Tezzamanzi, Andra G. B</contributor><contributor>Lutton, Evelyne</contributor><contributor>Miller, Julian F</contributor><contributor>Foster, James A</contributor><contributor>Ryan, Conor</contributor><contributor>Miller, Julian</contributor><contributor>Ryan, Conor</contributor><contributor>Tettamanzi, Andrea</contributor><contributor>Foster, James A.</contributor><contributor>Lutton, Evelyne</contributor><creatorcontrib>Imamura, Kosuke</creatorcontrib><creatorcontrib>Heckendorn, Robert B.</creatorcontrib><creatorcontrib>Soule, Terence</creatorcontrib><creatorcontrib>Foster, James A.</creatorcontrib><title>N-Version Genetic Programming via Fault Masking</title><title>Genetic Programming</title><description>We introduce a new method, N-Version Genetic Programming (NVGP), for building fault tolerant software by building an ensemble of automatically generated modules in such a way as to maximize their collective fault masking ability. The ensemble itself is an example of n-version modular redundancy for fault tolerance, where the output of the ensemble is the most frequent output of n independent modules. By maximizing collective fault masking, NVGP approaches the fault tolerance expected from n version modular redundancy with independent faults in component modules. The ensemble comprises individual modules from a large pool generated with genetic programming, using operators that increase the diversity of the population. Our experimental test problem classified promoter regions in Escherichia coli DNA sequences. For this problem, NVGP reduced the number and variance of errors over single modules produced by GP, with statistical significance.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Component Module</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Fault Tolerant Software</subject><subject>Genetic Program</subject><subject>Optimal Linear Combination</subject><subject>Replacement Candidate</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540433781</isbn><isbn>3540433783</isbn><isbn>9783540459842</isbn><isbn>3540459847</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFkEtPwzAQhM1TRKV3jrlwdOvN2rFzRBUtSOVxAK6W6zolNE2CnSLx73EfEntZaXZnpPkIuQE2AsbkGKngjHJRKE6lBnlChoVUGMW9lp2SBHIAisiLs_8bolRwThKGLKOF5HhJkkIokWV5rq7IMIQvFgcz5EIlZPxMP5wPVdukM9e4vrLpq29X3mw2VbNKfyqTTs227tMnE9ZRuSYXpamDGx73gLxP798mD3T-Mnuc3M1pBwolNQBWOQZMAIKAhYFM2sWSFw4Ek0sbC5R5bkpplSwKLoDz0pRcWGWEFczigNwecjsTrKlLbxpbBd35amP8rwbOBI9J8W90-Avx1Kyc14u2XQcNTO8oatQRit4T0zuK0YDHYN9-b13otds5rGt6b2r7abo-8tDIJERmOkMdC-EfUZFspQ</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Imamura, Kosuke</creator><creator>Heckendorn, Robert B.</creator><creator>Soule, Terence</creator><creator>Foster, James A.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>N-Version Genetic Programming via Fault Masking</title><author>Imamura, Kosuke ; Heckendorn, Robert B. ; Soule, Terence ; Foster, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1837-a11c8e010513151ba127cbd49e1507dc984f66af7c879945144faf45c8a5c50c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Component Module</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Fault Tolerant Software</topic><topic>Genetic Program</topic><topic>Optimal Linear Combination</topic><topic>Replacement Candidate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imamura, Kosuke</creatorcontrib><creatorcontrib>Heckendorn, Robert B.</creatorcontrib><creatorcontrib>Soule, Terence</creatorcontrib><creatorcontrib>Foster, James A.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imamura, Kosuke</au><au>Heckendorn, Robert B.</au><au>Soule, Terence</au><au>Foster, James A.</au><au>Tezzamanzi, Andra G. B</au><au>Lutton, Evelyne</au><au>Miller, Julian F</au><au>Foster, James A</au><au>Ryan, Conor</au><au>Miller, Julian</au><au>Ryan, Conor</au><au>Tettamanzi, Andrea</au><au>Foster, James A.</au><au>Lutton, Evelyne</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>N-Version Genetic Programming via Fault Masking</atitle><btitle>Genetic Programming</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2278</volume><spage>172</spage><epage>181</epage><pages>172-181</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540433781</isbn><isbn>3540433783</isbn><eisbn>9783540459842</eisbn><eisbn>3540459847</eisbn><abstract>We introduce a new method, N-Version Genetic Programming (NVGP), for building fault tolerant software by building an ensemble of automatically generated modules in such a way as to maximize their collective fault masking ability. The ensemble itself is an example of n-version modular redundancy for fault tolerance, where the output of the ensemble is the most frequent output of n independent modules. By maximizing collective fault masking, NVGP approaches the fault tolerance expected from n version modular redundancy with independent faults in component modules. The ensemble comprises individual modules from a large pool generated with genetic programming, using operators that increase the diversity of the population. Our experimental test problem classified promoter regions in Escherichia coli DNA sequences. For this problem, NVGP reduced the number and variance of errors over single modules produced by GP, with statistical significance.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45984-7_17</doi><oclcid>958522668</oclcid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Genetic Programming, 2002, Vol.2278, p.172-181 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14054507 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Component Module Computer science control theory systems Connectionism. Neural networks Exact sciences and technology Fault Tolerant Software Genetic Program Optimal Linear Combination Replacement Candidate |
title | N-Version Genetic Programming via Fault Masking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=N-Version%20Genetic%20Programming%20via%20Fault%20Masking&rft.btitle=Genetic%20Programming&rft.au=Imamura,%20Kosuke&rft.date=2002&rft.volume=2278&rft.spage=172&rft.epage=181&rft.pages=172-181&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540433781&rft.isbn_list=3540433783&rft_id=info:doi/10.1007/3-540-45984-7_17&rft_dat=%3Cproquest_pasca%3EEBC3071522_23_183%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540459842&rft.eisbn_list=3540459847&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071522_23_183&rft_id=info:pmid/&rfr_iscdi=true |