Verifying Temporal Properties Using Explicit Approximants: Completeness for Context-free Processes

We present a sequent calculus for formally verifying modal μ-calculus properties of concurrent processes. Building on work by Dam and Gurov, the proof system contains rules for the explicit manipulation of fixed-point approximants. We develop a new syntax for approximants, incorporating, in particul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schöpp, Ulrich, Simpson, Alex
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue
container_start_page 372
container_title
container_volume 2303
creator Schöpp, Ulrich
Simpson, Alex
description We present a sequent calculus for formally verifying modal μ-calculus properties of concurrent processes. Building on work by Dam and Gurov, the proof system contains rules for the explicit manipulation of fixed-point approximants. We develop a new syntax for approximants, incorporating, in particular, modalities for approximant modification. We make essential use of this feature to prove our main result: the sequent calculus is complete for establishing arbitrary μ-calculus properties of context-free processes.
doi_str_mv 10.1007/3-540-45931-6_26
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14054343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071803_32_386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d1b8574553a442b9976bbdeba6ce49bedc6827b7513446931977755624515bb73</originalsourceid><addsrcrecordid>eNotkM1vFDEMxcOnWJbeOc6FY0oS52PCrVoVWqkSHFrELUqynjIwOxOSVNr-92Ta9cXSe_aT_SPkI2fnnDHzGaiSjEplgVPthH5B3kNTngT9kmy45pwCSPvqZABo_es12TBggloj4S3ZWNUrISwT78hZKX9YKxAgjNmQ8BPzODyO8313i4e0ZD91P_KSMNcRS3dXVufymKYxjrW7SCkvx_Hg51q-dLvlkCasOGMp3bDkJswVj5UOGXFNic3A8oG8GfxU8OzUt-Tu6-Xt7orefP92vbu4oRGUqnTPQ6-MVAq8lCJYa3QIewxeR5Q24D7qXphgFAcpdXvfGmOU0kIqrkIwsCWfnnOTL9FPQ_ZzHItLud2bHx2XTElofLbk_HmuNGu-x-zCsvwtjjO3InfgGkf3RNityNsCnILz8u8BS3W4bkSca8MVf_tUMRcHzPCegQPhoNfwH09Gf3U</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071803_32_386</pqid></control><display><type>book_chapter</type><title>Verifying Temporal Properties Using Explicit Approximants: Completeness for Context-free Processes</title><source>Springer Books</source><creator>Schöpp, Ulrich ; Simpson, Alex</creator><contributor>Engberg, Uffe ; Nielsen, Mogens ; Nielsen, Mogens ; Engberg, Uffe</contributor><creatorcontrib>Schöpp, Ulrich ; Simpson, Alex ; Engberg, Uffe ; Nielsen, Mogens ; Nielsen, Mogens ; Engberg, Uffe</creatorcontrib><description>We present a sequent calculus for formally verifying modal μ-calculus properties of concurrent processes. Building on work by Dam and Gurov, the proof system contains rules for the explicit manipulation of fixed-point approximants. We develop a new syntax for approximants, incorporating, in particular, modalities for approximant modification. We make essential use of this feature to prove our main result: the sequent calculus is complete for establishing arbitrary μ-calculus properties of context-free processes.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354043366X</identifier><identifier>ISBN: 9783540433668</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540459316</identifier><identifier>EISBN: 9783540459316</identifier><identifier>DOI: 10.1007/3-540-45931-6_26</identifier><identifier>OCLC: 958522902</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Canonical Sequent ; Computer science; control theory; systems ; Derivation Tree ; Exact sciences and technology ; Language theory and syntactical analysis ; Proof System ; Sequent Calculus ; Temporal Property ; Theoretical computing</subject><ispartof>Foundations of Software Science and Computation Structures, 2002, Vol.2303, p.372-386</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d1b8574553a442b9976bbdeba6ce49bedc6827b7513446931977755624515bb73</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071803-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45931-6_26$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45931-6_26$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14054343$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Engberg, Uffe</contributor><contributor>Nielsen, Mogens</contributor><contributor>Nielsen, Mogens</contributor><contributor>Engberg, Uffe</contributor><creatorcontrib>Schöpp, Ulrich</creatorcontrib><creatorcontrib>Simpson, Alex</creatorcontrib><title>Verifying Temporal Properties Using Explicit Approximants: Completeness for Context-free Processes</title><title>Foundations of Software Science and Computation Structures</title><description>We present a sequent calculus for formally verifying modal μ-calculus properties of concurrent processes. Building on work by Dam and Gurov, the proof system contains rules for the explicit manipulation of fixed-point approximants. We develop a new syntax for approximants, incorporating, in particular, modalities for approximant modification. We make essential use of this feature to prove our main result: the sequent calculus is complete for establishing arbitrary μ-calculus properties of context-free processes.</description><subject>Applied sciences</subject><subject>Canonical Sequent</subject><subject>Computer science; control theory; systems</subject><subject>Derivation Tree</subject><subject>Exact sciences and technology</subject><subject>Language theory and syntactical analysis</subject><subject>Proof System</subject><subject>Sequent Calculus</subject><subject>Temporal Property</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354043366X</isbn><isbn>9783540433668</isbn><isbn>3540459316</isbn><isbn>9783540459316</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkM1vFDEMxcOnWJbeOc6FY0oS52PCrVoVWqkSHFrELUqynjIwOxOSVNr-92Ta9cXSe_aT_SPkI2fnnDHzGaiSjEplgVPthH5B3kNTngT9kmy45pwCSPvqZABo_es12TBggloj4S3ZWNUrISwT78hZKX9YKxAgjNmQ8BPzODyO8313i4e0ZD91P_KSMNcRS3dXVufymKYxjrW7SCkvx_Hg51q-dLvlkCasOGMp3bDkJswVj5UOGXFNic3A8oG8GfxU8OzUt-Tu6-Xt7orefP92vbu4oRGUqnTPQ6-MVAq8lCJYa3QIewxeR5Q24D7qXphgFAcpdXvfGmOU0kIqrkIwsCWfnnOTL9FPQ_ZzHItLud2bHx2XTElofLbk_HmuNGu-x-zCsvwtjjO3InfgGkf3RNityNsCnILz8u8BS3W4bkSca8MVf_tUMRcHzPCegQPhoNfwH09Gf3U</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Schöpp, Ulrich</creator><creator>Simpson, Alex</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Verifying Temporal Properties Using Explicit Approximants: Completeness for Context-free Processes</title><author>Schöpp, Ulrich ; Simpson, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d1b8574553a442b9976bbdeba6ce49bedc6827b7513446931977755624515bb73</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Canonical Sequent</topic><topic>Computer science; control theory; systems</topic><topic>Derivation Tree</topic><topic>Exact sciences and technology</topic><topic>Language theory and syntactical analysis</topic><topic>Proof System</topic><topic>Sequent Calculus</topic><topic>Temporal Property</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schöpp, Ulrich</creatorcontrib><creatorcontrib>Simpson, Alex</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schöpp, Ulrich</au><au>Simpson, Alex</au><au>Engberg, Uffe</au><au>Nielsen, Mogens</au><au>Nielsen, Mogens</au><au>Engberg, Uffe</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Verifying Temporal Properties Using Explicit Approximants: Completeness for Context-free Processes</atitle><btitle>Foundations of Software Science and Computation Structures</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2303</volume><spage>372</spage><epage>386</epage><pages>372-386</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354043366X</isbn><isbn>9783540433668</isbn><eisbn>3540459316</eisbn><eisbn>9783540459316</eisbn><abstract>We present a sequent calculus for formally verifying modal μ-calculus properties of concurrent processes. Building on work by Dam and Gurov, the proof system contains rules for the explicit manipulation of fixed-point approximants. We develop a new syntax for approximants, incorporating, in particular, modalities for approximant modification. We make essential use of this feature to prove our main result: the sequent calculus is complete for establishing arbitrary μ-calculus properties of context-free processes.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45931-6_26</doi><oclcid>958522902</oclcid><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Foundations of Software Science and Computation Structures, 2002, Vol.2303, p.372-386
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14054343
source Springer Books
subjects Applied sciences
Canonical Sequent
Computer science
control theory
systems
Derivation Tree
Exact sciences and technology
Language theory and syntactical analysis
Proof System
Sequent Calculus
Temporal Property
Theoretical computing
title Verifying Temporal Properties Using Explicit Approximants: Completeness for Context-free Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Verifying%20Temporal%20Properties%20Using%20Explicit%20Approximants:%20Completeness%20for%20Context-free%20Processes&rft.btitle=Foundations%20of%20Software%20Science%20and%20Computation%20Structures&rft.au=Sch%C3%B6pp,%20Ulrich&rft.date=2002&rft.volume=2303&rft.spage=372&rft.epage=386&rft.pages=372-386&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354043366X&rft.isbn_list=9783540433668&rft_id=info:doi/10.1007/3-540-45931-6_26&rft_dat=%3Cproquest_pasca%3EEBC3071803_32_386%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540459316&rft.eisbn_list=9783540459316&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071803_32_386&rft_id=info:pmid/&rfr_iscdi=true