On the Competitive Complexity of Navigation Tasks
A strategy S solving a navigation task T is called competitive with ratio r if the cost of solving any instance t of T does not exceed r times the cost of solving t optimally. The competitive complexity of task T is the smallest possible value r any strategy S can achieve. We discuss this notion, an...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | |
container_start_page | 245 |
container_title | |
container_volume | 2238 |
creator | Icking, Christian Kamphans, Thomas Klein, Rolf Langetepe, Elmar |
description | A strategy S solving a navigation task T is called competitive with ratio r if the cost of solving any instance t of T does not exceed r times the cost of solving t optimally. The competitive complexity of task T is the smallest possible value r any strategy S can achieve. We discuss this notion, and survey some tasks whose competitive complexities are known. Then we report on new results and ongoing work on the competitive complexity of exploring an unknown cellular environment. |
doi_str_mv | 10.1007/3-540-45993-6_14 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14052170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072678_19_252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-88d635b7cbaf95cd9ef0eee175f7be1405aaeb60cb2ae8d2ab97fb588eecac103</originalsourceid><addsrcrecordid>eNotkL1vwjAQxd1PNaXsHbN0NLV9sR2PFeqXhMpCZ8sxF0hJExq7qPz3TYBb7vTeuzf8CLnnbMIZ049AZcZoJo0BqizPzsgt9MpBUOck4YpzCpCZi5MBYIy6JAkDJqjRGVyTxMhcCs6ZuCHjEL5YPyCUEiIhfN6kcY3ptP3eYqxitTveNf5VcZ-2ZfrhdtXKxapt0oULm3BHrkpXBxyf9oh8vjwvpm90Nn99nz7NqAcuI83zpQJZaF-40ki_NFgyRORalrpAnjHpHBaK-UI4zJfCFUaXhcxzRO88ZzAiD8ferQve1WXnGl8Fu-2qb9ft7dAguB5yk2Mu9Fazws4WbbsJljM7ELRgeyz2AMwOBPsHOBV37c8vhmhx-PDYxM7Vfu22EbtggWmhdG65sUIK-AdLtm7V</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072678_19_252</pqid></control><display><type>book_chapter</type><title>On the Competitive Complexity of Navigation Tasks</title><source>Springer Books</source><creator>Icking, Christian ; Kamphans, Thomas ; Klein, Rolf ; Langetepe, Elmar</creator><contributor>Hager, Gregory D ; Bunke, Horst ; Klein, Rolf ; Christensen, Henrik I</contributor><creatorcontrib>Icking, Christian ; Kamphans, Thomas ; Klein, Rolf ; Langetepe, Elmar ; Hager, Gregory D ; Bunke, Horst ; Klein, Rolf ; Christensen, Henrik I</creatorcontrib><description>A strategy S solving a navigation task T is called competitive with ratio r if the cost of solving any instance t of T does not exceed r times the cost of solving t optimally. The competitive complexity of task T is the smallest possible value r any strategy S can achieve. We discuss this notion, and survey some tasks whose competitive complexities are known. Then we report on new results and ongoing work on the competitive complexity of exploring an unknown cellular environment.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540433996</identifier><identifier>ISBN: 9783540433996</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540459936</identifier><identifier>EISBN: 9783540459934</identifier><identifier>DOI: 10.1007/3-540-45993-6_14</identifier><identifier>OCLC: 958521102</identifier><identifier>LCCallNum: TJ212-225</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Competitive Ratio ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Exploration Strategy ; Grid Graph ; Navigation Task ; Robotics ; Simple Polygon</subject><ispartof>Lecture notes in computer science, 2002, Vol.2238, p.245-258</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-88d635b7cbaf95cd9ef0eee175f7be1405aaeb60cb2ae8d2ab97fb588eecac103</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072678-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45993-6_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45993-6_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14052170$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Hager, Gregory D</contributor><contributor>Bunke, Horst</contributor><contributor>Klein, Rolf</contributor><contributor>Christensen, Henrik I</contributor><creatorcontrib>Icking, Christian</creatorcontrib><creatorcontrib>Kamphans, Thomas</creatorcontrib><creatorcontrib>Klein, Rolf</creatorcontrib><creatorcontrib>Langetepe, Elmar</creatorcontrib><title>On the Competitive Complexity of Navigation Tasks</title><title>Lecture notes in computer science</title><description>A strategy S solving a navigation task T is called competitive with ratio r if the cost of solving any instance t of T does not exceed r times the cost of solving t optimally. The competitive complexity of task T is the smallest possible value r any strategy S can achieve. We discuss this notion, and survey some tasks whose competitive complexities are known. Then we report on new results and ongoing work on the competitive complexity of exploring an unknown cellular environment.</description><subject>Applied sciences</subject><subject>Competitive Ratio</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Exploration Strategy</subject><subject>Grid Graph</subject><subject>Navigation Task</subject><subject>Robotics</subject><subject>Simple Polygon</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540433996</isbn><isbn>9783540433996</isbn><isbn>3540459936</isbn><isbn>9783540459934</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkL1vwjAQxd1PNaXsHbN0NLV9sR2PFeqXhMpCZ8sxF0hJExq7qPz3TYBb7vTeuzf8CLnnbMIZ049AZcZoJo0BqizPzsgt9MpBUOck4YpzCpCZi5MBYIy6JAkDJqjRGVyTxMhcCs6ZuCHjEL5YPyCUEiIhfN6kcY3ptP3eYqxitTveNf5VcZ-2ZfrhdtXKxapt0oULm3BHrkpXBxyf9oh8vjwvpm90Nn99nz7NqAcuI83zpQJZaF-40ki_NFgyRORalrpAnjHpHBaK-UI4zJfCFUaXhcxzRO88ZzAiD8ferQve1WXnGl8Fu-2qb9ft7dAguB5yk2Mu9Fazws4WbbsJljM7ELRgeyz2AMwOBPsHOBV37c8vhmhx-PDYxM7Vfu22EbtggWmhdG65sUIK-AdLtm7V</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Icking, Christian</creator><creator>Kamphans, Thomas</creator><creator>Klein, Rolf</creator><creator>Langetepe, Elmar</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>On the Competitive Complexity of Navigation Tasks</title><author>Icking, Christian ; Kamphans, Thomas ; Klein, Rolf ; Langetepe, Elmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-88d635b7cbaf95cd9ef0eee175f7be1405aaeb60cb2ae8d2ab97fb588eecac103</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Competitive Ratio</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Exploration Strategy</topic><topic>Grid Graph</topic><topic>Navigation Task</topic><topic>Robotics</topic><topic>Simple Polygon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Icking, Christian</creatorcontrib><creatorcontrib>Kamphans, Thomas</creatorcontrib><creatorcontrib>Klein, Rolf</creatorcontrib><creatorcontrib>Langetepe, Elmar</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Icking, Christian</au><au>Kamphans, Thomas</au><au>Klein, Rolf</au><au>Langetepe, Elmar</au><au>Hager, Gregory D</au><au>Bunke, Horst</au><au>Klein, Rolf</au><au>Christensen, Henrik I</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>On the Competitive Complexity of Navigation Tasks</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2238</volume><spage>245</spage><epage>258</epage><pages>245-258</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540433996</isbn><isbn>9783540433996</isbn><eisbn>3540459936</eisbn><eisbn>9783540459934</eisbn><abstract>A strategy S solving a navigation task T is called competitive with ratio r if the cost of solving any instance t of T does not exceed r times the cost of solving t optimally. The competitive complexity of task T is the smallest possible value r any strategy S can achieve. We discuss this notion, and survey some tasks whose competitive complexities are known. Then we report on new results and ongoing work on the competitive complexity of exploring an unknown cellular environment.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45993-6_14</doi><oclcid>958521102</oclcid><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2002, Vol.2238, p.245-258 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14052170 |
source | Springer Books |
subjects | Applied sciences Competitive Ratio Computer science control theory systems Control theory. Systems Exact sciences and technology Exploration Strategy Grid Graph Navigation Task Robotics Simple Polygon |
title | On the Competitive Complexity of Navigation Tasks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=On%20the%20Competitive%20Complexity%20of%20Navigation%20Tasks&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Icking,%20Christian&rft.date=2002&rft.volume=2238&rft.spage=245&rft.epage=258&rft.pages=245-258&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540433996&rft.isbn_list=9783540433996&rft_id=info:doi/10.1007/3-540-45993-6_14&rft_dat=%3Cproquest_pasca%3EEBC3072678_19_252%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540459936&rft.eisbn_list=9783540459934&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072678_19_252&rft_id=info:pmid/&rfr_iscdi=true |