On the Competitive Complexity of Navigation Tasks

A strategy S solving a navigation task T is called competitive with ratio r if the cost of solving any instance t of T does not exceed r times the cost of solving t optimally. The competitive complexity of task T is the smallest possible value r any strategy S can achieve. We discuss this notion, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Icking, Christian, Kamphans, Thomas, Klein, Rolf, Langetepe, Elmar
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue
container_start_page 245
container_title
container_volume 2238
creator Icking, Christian
Kamphans, Thomas
Klein, Rolf
Langetepe, Elmar
description A strategy S solving a navigation task T is called competitive with ratio r if the cost of solving any instance t of T does not exceed r times the cost of solving t optimally. The competitive complexity of task T is the smallest possible value r any strategy S can achieve. We discuss this notion, and survey some tasks whose competitive complexities are known. Then we report on new results and ongoing work on the competitive complexity of exploring an unknown cellular environment.
doi_str_mv 10.1007/3-540-45993-6_14
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14052170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072678_19_252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-88d635b7cbaf95cd9ef0eee175f7be1405aaeb60cb2ae8d2ab97fb588eecac103</originalsourceid><addsrcrecordid>eNotkL1vwjAQxd1PNaXsHbN0NLV9sR2PFeqXhMpCZ8sxF0hJExq7qPz3TYBb7vTeuzf8CLnnbMIZ049AZcZoJo0BqizPzsgt9MpBUOck4YpzCpCZi5MBYIy6JAkDJqjRGVyTxMhcCs6ZuCHjEL5YPyCUEiIhfN6kcY3ptP3eYqxitTveNf5VcZ-2ZfrhdtXKxapt0oULm3BHrkpXBxyf9oh8vjwvpm90Nn99nz7NqAcuI83zpQJZaF-40ki_NFgyRORalrpAnjHpHBaK-UI4zJfCFUaXhcxzRO88ZzAiD8ferQve1WXnGl8Fu-2qb9ft7dAguB5yk2Mu9Fazws4WbbsJljM7ELRgeyz2AMwOBPsHOBV37c8vhmhx-PDYxM7Vfu22EbtggWmhdG65sUIK-AdLtm7V</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072678_19_252</pqid></control><display><type>book_chapter</type><title>On the Competitive Complexity of Navigation Tasks</title><source>Springer Books</source><creator>Icking, Christian ; Kamphans, Thomas ; Klein, Rolf ; Langetepe, Elmar</creator><contributor>Hager, Gregory D ; Bunke, Horst ; Klein, Rolf ; Christensen, Henrik I</contributor><creatorcontrib>Icking, Christian ; Kamphans, Thomas ; Klein, Rolf ; Langetepe, Elmar ; Hager, Gregory D ; Bunke, Horst ; Klein, Rolf ; Christensen, Henrik I</creatorcontrib><description>A strategy S solving a navigation task T is called competitive with ratio r if the cost of solving any instance t of T does not exceed r times the cost of solving t optimally. The competitive complexity of task T is the smallest possible value r any strategy S can achieve. We discuss this notion, and survey some tasks whose competitive complexities are known. Then we report on new results and ongoing work on the competitive complexity of exploring an unknown cellular environment.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540433996</identifier><identifier>ISBN: 9783540433996</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540459936</identifier><identifier>EISBN: 9783540459934</identifier><identifier>DOI: 10.1007/3-540-45993-6_14</identifier><identifier>OCLC: 958521102</identifier><identifier>LCCallNum: TJ212-225</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Competitive Ratio ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Exploration Strategy ; Grid Graph ; Navigation Task ; Robotics ; Simple Polygon</subject><ispartof>Lecture notes in computer science, 2002, Vol.2238, p.245-258</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-88d635b7cbaf95cd9ef0eee175f7be1405aaeb60cb2ae8d2ab97fb588eecac103</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072678-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45993-6_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45993-6_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14052170$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Hager, Gregory D</contributor><contributor>Bunke, Horst</contributor><contributor>Klein, Rolf</contributor><contributor>Christensen, Henrik I</contributor><creatorcontrib>Icking, Christian</creatorcontrib><creatorcontrib>Kamphans, Thomas</creatorcontrib><creatorcontrib>Klein, Rolf</creatorcontrib><creatorcontrib>Langetepe, Elmar</creatorcontrib><title>On the Competitive Complexity of Navigation Tasks</title><title>Lecture notes in computer science</title><description>A strategy S solving a navigation task T is called competitive with ratio r if the cost of solving any instance t of T does not exceed r times the cost of solving t optimally. The competitive complexity of task T is the smallest possible value r any strategy S can achieve. We discuss this notion, and survey some tasks whose competitive complexities are known. Then we report on new results and ongoing work on the competitive complexity of exploring an unknown cellular environment.</description><subject>Applied sciences</subject><subject>Competitive Ratio</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Exploration Strategy</subject><subject>Grid Graph</subject><subject>Navigation Task</subject><subject>Robotics</subject><subject>Simple Polygon</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540433996</isbn><isbn>9783540433996</isbn><isbn>3540459936</isbn><isbn>9783540459934</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2002</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkL1vwjAQxd1PNaXsHbN0NLV9sR2PFeqXhMpCZ8sxF0hJExq7qPz3TYBb7vTeuzf8CLnnbMIZ049AZcZoJo0BqizPzsgt9MpBUOck4YpzCpCZi5MBYIy6JAkDJqjRGVyTxMhcCs6ZuCHjEL5YPyCUEiIhfN6kcY3ptP3eYqxitTveNf5VcZ-2ZfrhdtXKxapt0oULm3BHrkpXBxyf9oh8vjwvpm90Nn99nz7NqAcuI83zpQJZaF-40ki_NFgyRORalrpAnjHpHBaK-UI4zJfCFUaXhcxzRO88ZzAiD8ferQve1WXnGl8Fu-2qb9ft7dAguB5yk2Mu9Fazws4WbbsJljM7ELRgeyz2AMwOBPsHOBV37c8vhmhx-PDYxM7Vfu22EbtggWmhdG65sUIK-AdLtm7V</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Icking, Christian</creator><creator>Kamphans, Thomas</creator><creator>Klein, Rolf</creator><creator>Langetepe, Elmar</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>On the Competitive Complexity of Navigation Tasks</title><author>Icking, Christian ; Kamphans, Thomas ; Klein, Rolf ; Langetepe, Elmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-88d635b7cbaf95cd9ef0eee175f7be1405aaeb60cb2ae8d2ab97fb588eecac103</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Competitive Ratio</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Exploration Strategy</topic><topic>Grid Graph</topic><topic>Navigation Task</topic><topic>Robotics</topic><topic>Simple Polygon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Icking, Christian</creatorcontrib><creatorcontrib>Kamphans, Thomas</creatorcontrib><creatorcontrib>Klein, Rolf</creatorcontrib><creatorcontrib>Langetepe, Elmar</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Icking, Christian</au><au>Kamphans, Thomas</au><au>Klein, Rolf</au><au>Langetepe, Elmar</au><au>Hager, Gregory D</au><au>Bunke, Horst</au><au>Klein, Rolf</au><au>Christensen, Henrik I</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>On the Competitive Complexity of Navigation Tasks</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2002</date><risdate>2002</risdate><volume>2238</volume><spage>245</spage><epage>258</epage><pages>245-258</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540433996</isbn><isbn>9783540433996</isbn><eisbn>3540459936</eisbn><eisbn>9783540459934</eisbn><abstract>A strategy S solving a navigation task T is called competitive with ratio r if the cost of solving any instance t of T does not exceed r times the cost of solving t optimally. The competitive complexity of task T is the smallest possible value r any strategy S can achieve. We discuss this notion, and survey some tasks whose competitive complexities are known. Then we report on new results and ongoing work on the competitive complexity of exploring an unknown cellular environment.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45993-6_14</doi><oclcid>958521102</oclcid><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2002, Vol.2238, p.245-258
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14052170
source Springer Books
subjects Applied sciences
Competitive Ratio
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Exploration Strategy
Grid Graph
Navigation Task
Robotics
Simple Polygon
title On the Competitive Complexity of Navigation Tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=On%20the%20Competitive%20Complexity%20of%20Navigation%20Tasks&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Icking,%20Christian&rft.date=2002&rft.volume=2238&rft.spage=245&rft.epage=258&rft.pages=245-258&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540433996&rft.isbn_list=9783540433996&rft_id=info:doi/10.1007/3-540-45993-6_14&rft_dat=%3Cproquest_pasca%3EEBC3072678_19_252%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540459936&rft.eisbn_list=9783540459934&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072678_19_252&rft_id=info:pmid/&rfr_iscdi=true