Labeling Subway Lines
Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line wi...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 659 |
---|---|
container_issue | |
container_start_page | 649 |
container_title | |
container_volume | 2223 |
creator | Garrido, Mari Ángeles Iturriaga, Claudia Márquez, Alberto Portillo, José Ramón Reyes, Pedro Wolff, Alexander |
description | Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line with axis-parallel rectangular labels of equal height. Our aim is to maximize label size under the constraint that all points must be labeled.
Even a seemingly strong simplification of the general point-labeling problem, namely to decide whether a set of points on a horizontal line can be labeled with sliding rectangular labels, turns out to be weakly NPcomplete. This is the first labeling problem that is known to belong to this class. We give a pseudo-polynomial time algorithm for it.
In case of a sloping line points can be labeled with maximum-size square labels in O(n log n) time if four label positions per point are allowed and in O(n3log n) time if labels can slide. We also investigate rectangular labels. |
doi_str_mv | 10.1007/3-540-45678-3_55 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14051020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072604_61_668</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-9c9342035429b5aaf7d94f67f981706cc9bc1ef347194f702fd12fafd21fe04d3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQNE8RlR6ROPbC0WXXz_iIKl5SJA7A2XISuwRCGuJUqH-P-5DYy65mdmakIeQaYY4A-pZTKYAKqXROuZXyiEyNznkCdxgckwwVIuVcmJN_jplcslOSAQdGjRb8nGRGJgy1wgsyjfET0nCGDGRGrgpX-rbplrPXdfnrNrOi6Xy8JGfBtdFPD3tC3h_u3xZPtHh5fF7cFbRnKh-pqQwXDFIuM6V0LujaiKB0MDlqUFVlygp94EJjwjWwUCMLLtQMgwdR8wm52fv2LlauDYPrqibafmi-3bCxKEAipIAJme__YqK6pR9suVp9RYtgt13Z1I8Au-tle8sk4AfjYfWz9nG0fquofDcOrq0-XD_6IVoOmikQVqFVKud_M2Bjtw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072604_61_668</pqid></control><display><type>book_chapter</type><title>Labeling Subway Lines</title><source>Springer Books</source><creator>Garrido, Mari Ángeles ; Iturriaga, Claudia ; Márquez, Alberto ; Portillo, José Ramón ; Reyes, Pedro ; Wolff, Alexander</creator><contributor>Takaoka, Tadao ; Eades, Peter ; Takaoka, Tadao ; Eades, Peter</contributor><creatorcontrib>Garrido, Mari Ángeles ; Iturriaga, Claudia ; Márquez, Alberto ; Portillo, José Ramón ; Reyes, Pedro ; Wolff, Alexander ; Takaoka, Tadao ; Eades, Peter ; Takaoka, Tadao ; Eades, Peter</creatorcontrib><description>Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line with axis-parallel rectangular labels of equal height. Our aim is to maximize label size under the constraint that all points must be labeled.
Even a seemingly strong simplification of the general point-labeling problem, namely to decide whether a set of points on a horizontal line can be labeled with sliding rectangular labels, turns out to be weakly NPcomplete. This is the first labeling problem that is known to belong to this class. We give a pseudo-polynomial time algorithm for it.
In case of a sloping line points can be labeled with maximum-size square labels in O(n log n) time if four label positions per point are allowed and in O(n3log n) time if labels can slide. We also investigate rectangular labels.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540429852</identifier><identifier>ISBN: 3540429859</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540456780</identifier><identifier>EISBN: 3540456783</identifier><identifier>DOI: 10.1007/3-540-45678-3_55</identifier><identifier>OCLC: 958521761</identifier><identifier>LCCallNum: QA76.6-76.66</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Input Line ; Input Point ; Label Point ; Label Position ; Optimal Label ; Theoretical computing</subject><ispartof>Algorithms and Computation, 2001, Vol.2223, p.649-659</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072604-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45678-3_55$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45678-3_55$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14051020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Takaoka, Tadao</contributor><contributor>Eades, Peter</contributor><contributor>Takaoka, Tadao</contributor><contributor>Eades, Peter</contributor><creatorcontrib>Garrido, Mari Ángeles</creatorcontrib><creatorcontrib>Iturriaga, Claudia</creatorcontrib><creatorcontrib>Márquez, Alberto</creatorcontrib><creatorcontrib>Portillo, José Ramón</creatorcontrib><creatorcontrib>Reyes, Pedro</creatorcontrib><creatorcontrib>Wolff, Alexander</creatorcontrib><title>Labeling Subway Lines</title><title>Algorithms and Computation</title><description>Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line with axis-parallel rectangular labels of equal height. Our aim is to maximize label size under the constraint that all points must be labeled.
Even a seemingly strong simplification of the general point-labeling problem, namely to decide whether a set of points on a horizontal line can be labeled with sliding rectangular labels, turns out to be weakly NPcomplete. This is the first labeling problem that is known to belong to this class. We give a pseudo-polynomial time algorithm for it.
In case of a sloping line points can be labeled with maximum-size square labels in O(n log n) time if four label positions per point are allowed and in O(n3log n) time if labels can slide. We also investigate rectangular labels.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Input Line</subject><subject>Input Point</subject><subject>Label Point</subject><subject>Label Position</subject><subject>Optimal Label</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540429852</isbn><isbn>3540429859</isbn><isbn>9783540456780</isbn><isbn>3540456783</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFUMtOwzAQNE8RlR6ROPbC0WXXz_iIKl5SJA7A2XISuwRCGuJUqH-P-5DYy65mdmakIeQaYY4A-pZTKYAKqXROuZXyiEyNznkCdxgckwwVIuVcmJN_jplcslOSAQdGjRb8nGRGJgy1wgsyjfET0nCGDGRGrgpX-rbplrPXdfnrNrOi6Xy8JGfBtdFPD3tC3h_u3xZPtHh5fF7cFbRnKh-pqQwXDFIuM6V0LujaiKB0MDlqUFVlygp94EJjwjWwUCMLLtQMgwdR8wm52fv2LlauDYPrqibafmi-3bCxKEAipIAJme__YqK6pR9suVp9RYtgt13Z1I8Au-tle8sk4AfjYfWz9nG0fquofDcOrq0-XD_6IVoOmikQVqFVKud_M2Bjtw</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Garrido, Mari Ángeles</creator><creator>Iturriaga, Claudia</creator><creator>Márquez, Alberto</creator><creator>Portillo, José Ramón</creator><creator>Reyes, Pedro</creator><creator>Wolff, Alexander</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Labeling Subway Lines</title><author>Garrido, Mari Ángeles ; Iturriaga, Claudia ; Márquez, Alberto ; Portillo, José Ramón ; Reyes, Pedro ; Wolff, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-9c9342035429b5aaf7d94f67f981706cc9bc1ef347194f702fd12fafd21fe04d3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Input Line</topic><topic>Input Point</topic><topic>Label Point</topic><topic>Label Position</topic><topic>Optimal Label</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garrido, Mari Ángeles</creatorcontrib><creatorcontrib>Iturriaga, Claudia</creatorcontrib><creatorcontrib>Márquez, Alberto</creatorcontrib><creatorcontrib>Portillo, José Ramón</creatorcontrib><creatorcontrib>Reyes, Pedro</creatorcontrib><creatorcontrib>Wolff, Alexander</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garrido, Mari Ángeles</au><au>Iturriaga, Claudia</au><au>Márquez, Alberto</au><au>Portillo, José Ramón</au><au>Reyes, Pedro</au><au>Wolff, Alexander</au><au>Takaoka, Tadao</au><au>Eades, Peter</au><au>Takaoka, Tadao</au><au>Eades, Peter</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Labeling Subway Lines</atitle><btitle>Algorithms and Computation</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2223</volume><spage>649</spage><epage>659</epage><pages>649-659</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540429852</isbn><isbn>3540429859</isbn><eisbn>9783540456780</eisbn><eisbn>3540456783</eisbn><abstract>Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line with axis-parallel rectangular labels of equal height. Our aim is to maximize label size under the constraint that all points must be labeled.
Even a seemingly strong simplification of the general point-labeling problem, namely to decide whether a set of points on a horizontal line can be labeled with sliding rectangular labels, turns out to be weakly NPcomplete. This is the first labeling problem that is known to belong to this class. We give a pseudo-polynomial time algorithm for it.
In case of a sloping line points can be labeled with maximum-size square labels in O(n log n) time if four label positions per point are allowed and in O(n3log n) time if labels can slide. We also investigate rectangular labels.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45678-3_55</doi><oclcid>958521761</oclcid><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Algorithms and Computation, 2001, Vol.2223, p.649-659 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14051020 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact sciences and technology Input Line Input Point Label Point Label Position Optimal Label Theoretical computing |
title | Labeling Subway Lines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Labeling%20Subway%20Lines&rft.btitle=Algorithms%20and%20Computation&rft.au=Garrido,%20Mari%20%C3%81ngeles&rft.date=2001&rft.volume=2223&rft.spage=649&rft.epage=659&rft.pages=649-659&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540429852&rft.isbn_list=3540429859&rft_id=info:doi/10.1007/3-540-45678-3_55&rft_dat=%3Cproquest_pasca%3EEBC3072604_61_668%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540456780&rft.eisbn_list=3540456783&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072604_61_668&rft_id=info:pmid/&rfr_iscdi=true |