Labeling Subway Lines

Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Garrido, Mari Ángeles, Iturriaga, Claudia, Márquez, Alberto, Portillo, José Ramón, Reyes, Pedro, Wolff, Alexander
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue
container_start_page 649
container_title
container_volume 2223
creator Garrido, Mari Ángeles
Iturriaga, Claudia
Márquez, Alberto
Portillo, José Ramón
Reyes, Pedro
Wolff, Alexander
description Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line with axis-parallel rectangular labels of equal height. Our aim is to maximize label size under the constraint that all points must be labeled. Even a seemingly strong simplification of the general point-labeling problem, namely to decide whether a set of points on a horizontal line can be labeled with sliding rectangular labels, turns out to be weakly NPcomplete. This is the first labeling problem that is known to belong to this class. We give a pseudo-polynomial time algorithm for it. In case of a sloping line points can be labeled with maximum-size square labels in O(n log n) time if four label positions per point are allowed and in O(n3log n) time if labels can slide. We also investigate rectangular labels.
doi_str_mv 10.1007/3-540-45678-3_55
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14051020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072604_61_668</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-9c9342035429b5aaf7d94f67f981706cc9bc1ef347194f702fd12fafd21fe04d3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQNE8RlR6ROPbC0WXXz_iIKl5SJA7A2XISuwRCGuJUqH-P-5DYy65mdmakIeQaYY4A-pZTKYAKqXROuZXyiEyNznkCdxgckwwVIuVcmJN_jplcslOSAQdGjRb8nGRGJgy1wgsyjfET0nCGDGRGrgpX-rbplrPXdfnrNrOi6Xy8JGfBtdFPD3tC3h_u3xZPtHh5fF7cFbRnKh-pqQwXDFIuM6V0LujaiKB0MDlqUFVlygp94EJjwjWwUCMLLtQMgwdR8wm52fv2LlauDYPrqibafmi-3bCxKEAipIAJme__YqK6pR9suVp9RYtgt13Z1I8Au-tle8sk4AfjYfWz9nG0fquofDcOrq0-XD_6IVoOmikQVqFVKud_M2Bjtw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072604_61_668</pqid></control><display><type>book_chapter</type><title>Labeling Subway Lines</title><source>Springer Books</source><creator>Garrido, Mari Ángeles ; Iturriaga, Claudia ; Márquez, Alberto ; Portillo, José Ramón ; Reyes, Pedro ; Wolff, Alexander</creator><contributor>Takaoka, Tadao ; Eades, Peter ; Takaoka, Tadao ; Eades, Peter</contributor><creatorcontrib>Garrido, Mari Ángeles ; Iturriaga, Claudia ; Márquez, Alberto ; Portillo, José Ramón ; Reyes, Pedro ; Wolff, Alexander ; Takaoka, Tadao ; Eades, Peter ; Takaoka, Tadao ; Eades, Peter</creatorcontrib><description>Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line with axis-parallel rectangular labels of equal height. Our aim is to maximize label size under the constraint that all points must be labeled. Even a seemingly strong simplification of the general point-labeling problem, namely to decide whether a set of points on a horizontal line can be labeled with sliding rectangular labels, turns out to be weakly NPcomplete. This is the first labeling problem that is known to belong to this class. We give a pseudo-polynomial time algorithm for it. In case of a sloping line points can be labeled with maximum-size square labels in O(n log n) time if four label positions per point are allowed and in O(n3log n) time if labels can slide. We also investigate rectangular labels.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540429852</identifier><identifier>ISBN: 3540429859</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540456780</identifier><identifier>EISBN: 3540456783</identifier><identifier>DOI: 10.1007/3-540-45678-3_55</identifier><identifier>OCLC: 958521761</identifier><identifier>LCCallNum: QA76.6-76.66</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Input Line ; Input Point ; Label Point ; Label Position ; Optimal Label ; Theoretical computing</subject><ispartof>Algorithms and Computation, 2001, Vol.2223, p.649-659</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072604-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45678-3_55$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45678-3_55$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14051020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Takaoka, Tadao</contributor><contributor>Eades, Peter</contributor><contributor>Takaoka, Tadao</contributor><contributor>Eades, Peter</contributor><creatorcontrib>Garrido, Mari Ángeles</creatorcontrib><creatorcontrib>Iturriaga, Claudia</creatorcontrib><creatorcontrib>Márquez, Alberto</creatorcontrib><creatorcontrib>Portillo, José Ramón</creatorcontrib><creatorcontrib>Reyes, Pedro</creatorcontrib><creatorcontrib>Wolff, Alexander</creatorcontrib><title>Labeling Subway Lines</title><title>Algorithms and Computation</title><description>Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line with axis-parallel rectangular labels of equal height. Our aim is to maximize label size under the constraint that all points must be labeled. Even a seemingly strong simplification of the general point-labeling problem, namely to decide whether a set of points on a horizontal line can be labeled with sliding rectangular labels, turns out to be weakly NPcomplete. This is the first labeling problem that is known to belong to this class. We give a pseudo-polynomial time algorithm for it. In case of a sloping line points can be labeled with maximum-size square labels in O(n log n) time if four label positions per point are allowed and in O(n3log n) time if labels can slide. We also investigate rectangular labels.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Input Line</subject><subject>Input Point</subject><subject>Label Point</subject><subject>Label Position</subject><subject>Optimal Label</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540429852</isbn><isbn>3540429859</isbn><isbn>9783540456780</isbn><isbn>3540456783</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFUMtOwzAQNE8RlR6ROPbC0WXXz_iIKl5SJA7A2XISuwRCGuJUqH-P-5DYy65mdmakIeQaYY4A-pZTKYAKqXROuZXyiEyNznkCdxgckwwVIuVcmJN_jplcslOSAQdGjRb8nGRGJgy1wgsyjfET0nCGDGRGrgpX-rbplrPXdfnrNrOi6Xy8JGfBtdFPD3tC3h_u3xZPtHh5fF7cFbRnKh-pqQwXDFIuM6V0LujaiKB0MDlqUFVlygp94EJjwjWwUCMLLtQMgwdR8wm52fv2LlauDYPrqibafmi-3bCxKEAipIAJme__YqK6pR9suVp9RYtgt13Z1I8Au-tle8sk4AfjYfWz9nG0fquofDcOrq0-XD_6IVoOmikQVqFVKud_M2Bjtw</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Garrido, Mari Ángeles</creator><creator>Iturriaga, Claudia</creator><creator>Márquez, Alberto</creator><creator>Portillo, José Ramón</creator><creator>Reyes, Pedro</creator><creator>Wolff, Alexander</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Labeling Subway Lines</title><author>Garrido, Mari Ángeles ; Iturriaga, Claudia ; Márquez, Alberto ; Portillo, José Ramón ; Reyes, Pedro ; Wolff, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-9c9342035429b5aaf7d94f67f981706cc9bc1ef347194f702fd12fafd21fe04d3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Input Line</topic><topic>Input Point</topic><topic>Label Point</topic><topic>Label Position</topic><topic>Optimal Label</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garrido, Mari Ángeles</creatorcontrib><creatorcontrib>Iturriaga, Claudia</creatorcontrib><creatorcontrib>Márquez, Alberto</creatorcontrib><creatorcontrib>Portillo, José Ramón</creatorcontrib><creatorcontrib>Reyes, Pedro</creatorcontrib><creatorcontrib>Wolff, Alexander</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garrido, Mari Ángeles</au><au>Iturriaga, Claudia</au><au>Márquez, Alberto</au><au>Portillo, José Ramón</au><au>Reyes, Pedro</au><au>Wolff, Alexander</au><au>Takaoka, Tadao</au><au>Eades, Peter</au><au>Takaoka, Tadao</au><au>Eades, Peter</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Labeling Subway Lines</atitle><btitle>Algorithms and Computation</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2223</volume><spage>649</spage><epage>659</epage><pages>649-659</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540429852</isbn><isbn>3540429859</isbn><eisbn>9783540456780</eisbn><eisbn>3540456783</eisbn><abstract>Graphical features on map, charts, diagrams and graph drawings usually must be annotated with text labels in order to convey their meaning. In this paper we focus on a problem that arises when labeling schematized maps, e.g. for subway networks. We present algorithms for labeling points on a line with axis-parallel rectangular labels of equal height. Our aim is to maximize label size under the constraint that all points must be labeled. Even a seemingly strong simplification of the general point-labeling problem, namely to decide whether a set of points on a horizontal line can be labeled with sliding rectangular labels, turns out to be weakly NPcomplete. This is the first labeling problem that is known to belong to this class. We give a pseudo-polynomial time algorithm for it. In case of a sloping line points can be labeled with maximum-size square labels in O(n log n) time if four label positions per point are allowed and in O(n3log n) time if labels can slide. We also investigate rectangular labels.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45678-3_55</doi><oclcid>958521761</oclcid><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Algorithms and Computation, 2001, Vol.2223, p.649-659
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14051020
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Input Line
Input Point
Label Point
Label Position
Optimal Label
Theoretical computing
title Labeling Subway Lines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Labeling%20Subway%20Lines&rft.btitle=Algorithms%20and%20Computation&rft.au=Garrido,%20Mari%20%C3%81ngeles&rft.date=2001&rft.volume=2223&rft.spage=649&rft.epage=659&rft.pages=649-659&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540429852&rft.isbn_list=3540429859&rft_id=info:doi/10.1007/3-540-45678-3_55&rft_dat=%3Cproquest_pasca%3EEBC3072604_61_668%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540456780&rft.eisbn_list=3540456783&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072604_61_668&rft_id=info:pmid/&rfr_iscdi=true