Transparent Orthogonal Checkpointing through User-Level Pagers
Orthogonal persistence opens up the possibility for a number of applications. We present an approach for easily enabling transparent orthogonal persistence, basically on top of a modern μ-kernel. Not only are all data objects made persistent. Threads and tasks are also treated as normal data objects...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | |
container_start_page | 201 |
container_title | |
container_volume | 2135 |
creator | Skoglund, Espen Ceelen, Christian Liedtke, Jochen |
description | Orthogonal persistence opens up the possibility for a number of applications. We present an approach for easily enabling transparent orthogonal persistence, basically on top of a modern μ-kernel. Not only are all data objects made persistent. Threads and tasks are also treated as normal data objects, making the threads and tasks persistent between system restarts. As such, the system is fault surviving. Persistence is achieved by the means of a transparent checkpoint server running in user-level. The checkpoint server takes regular snapshots of all user-level memory in the system, and also of the thread control blocks inside the kernel. The execution of the checkpointing itself is completely transparent to the μ-kernel, and only a few recovery mechanisms need to be implemented inside the kernel in order to support checkpointing. During system recovery (after a crash or a controlled shutdown), the consistency of threads is assured by the fact that all their user-level state (user memory) and kernel-level state (thread control blocks) will reside in stable storage. All other kernel state in the system can be reconstructed either upon initial recovery, or by standard page fault mechanisms during runtime. |
doi_str_mv | 10.1007/3-540-45498-5_18 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14047869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073210_23_209</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1838-a3119ed0be0a699f1c3e0f4f911729f5b45fd6ec59a92cb496d6d93a8ac19dfd3</originalsourceid><addsrcrecordid>eNotkM1PwzAMxcOnKGN3jr1wzEjipK0vSGjiS5o0DpvELcrSdB0rbUk6JP57sg1fLNl-T88_Qm45m3DG8nugSjIqlcSCKs2LEzLGvIA4PMzkKUl4xjkFkHhGrg8LkYP6OCcJAyYo5hIuSYKqUEIKkFdkHMIniwVCZUwm5GHhTRt64107pHM_1N26a02TTmtnt323aYdNu06H2ne7dZ0ug_N05n5ck76btfPhhlxUpglu_N9HZPn8tJi-0tn85W36OKM9L6CgBjhHV7KVYyZDrLgFxypZIee5wEqtpKrKzFmFBoVdSczKrEQwhbEcy6qEEbk7-vYmWNNUMbTdBN37zZfxv5rHx_Miw3g3Od6FuGpjQr3qum3QnOk9UQ06MtIHenpPNArg39h33zsXBu32ChtxeNPY2vRDfFMDy0FEEwFaMIQ_DKlz0w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073210_23_209</pqid></control><display><type>book_chapter</type><title>Transparent Orthogonal Checkpointing through User-Level Pagers</title><source>Springer Books</source><creator>Skoglund, Espen ; Ceelen, Christian ; Liedtke, Jochen</creator><contributor>Dearle, Alan ; Kirby, Graham N. C ; Sjoberg, Dag I. K ; Dearle, Alan ; Kirby, Graham N. C. ; Sjøberg, Dag I. K.</contributor><creatorcontrib>Skoglund, Espen ; Ceelen, Christian ; Liedtke, Jochen ; Dearle, Alan ; Kirby, Graham N. C ; Sjoberg, Dag I. K ; Dearle, Alan ; Kirby, Graham N. C. ; Sjøberg, Dag I. K.</creatorcontrib><description>Orthogonal persistence opens up the possibility for a number of applications. We present an approach for easily enabling transparent orthogonal persistence, basically on top of a modern μ-kernel. Not only are all data objects made persistent. Threads and tasks are also treated as normal data objects, making the threads and tasks persistent between system restarts. As such, the system is fault surviving. Persistence is achieved by the means of a transparent checkpoint server running in user-level. The checkpoint server takes regular snapshots of all user-level memory in the system, and also of the thread control blocks inside the kernel. The execution of the checkpointing itself is completely transparent to the μ-kernel, and only a few recovery mechanisms need to be implemented inside the kernel in order to support checkpointing. During system recovery (after a crash or a controlled shutdown), the consistency of threads is assured by the fact that all their user-level state (user memory) and kernel-level state (thread control blocks) will reside in stable storage. All other kernel state in the system can be reconstructed either upon initial recovery, or by standard page fault mechanisms during runtime.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354042735X</identifier><identifier>ISBN: 9783540427353</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540454984</identifier><identifier>EISBN: 3540454985</identifier><identifier>DOI: 10.1007/3-540-45498-5_18</identifier><identifier>OCLC: 958524234</identifier><identifier>LCCallNum: QA76.758</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Address Space ; Applied sciences ; Computer science; control theory; systems ; Device Driver ; Exact sciences and technology ; Memory and file management (including protection and security) ; Memory organisation. Data processing ; Page Fault ; Page Table ; Software ; Stable Storage</subject><ispartof>Lecture notes in computer science, 2001, Vol.2135, p.201-214</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073210-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45498-5_18$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45498-5_18$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14047869$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Dearle, Alan</contributor><contributor>Kirby, Graham N. C</contributor><contributor>Sjoberg, Dag I. K</contributor><contributor>Dearle, Alan</contributor><contributor>Kirby, Graham N. C.</contributor><contributor>Sjøberg, Dag I. K.</contributor><creatorcontrib>Skoglund, Espen</creatorcontrib><creatorcontrib>Ceelen, Christian</creatorcontrib><creatorcontrib>Liedtke, Jochen</creatorcontrib><title>Transparent Orthogonal Checkpointing through User-Level Pagers</title><title>Lecture notes in computer science</title><description>Orthogonal persistence opens up the possibility for a number of applications. We present an approach for easily enabling transparent orthogonal persistence, basically on top of a modern μ-kernel. Not only are all data objects made persistent. Threads and tasks are also treated as normal data objects, making the threads and tasks persistent between system restarts. As such, the system is fault surviving. Persistence is achieved by the means of a transparent checkpoint server running in user-level. The checkpoint server takes regular snapshots of all user-level memory in the system, and also of the thread control blocks inside the kernel. The execution of the checkpointing itself is completely transparent to the μ-kernel, and only a few recovery mechanisms need to be implemented inside the kernel in order to support checkpointing. During system recovery (after a crash or a controlled shutdown), the consistency of threads is assured by the fact that all their user-level state (user memory) and kernel-level state (thread control blocks) will reside in stable storage. All other kernel state in the system can be reconstructed either upon initial recovery, or by standard page fault mechanisms during runtime.</description><subject>Address Space</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Device Driver</subject><subject>Exact sciences and technology</subject><subject>Memory and file management (including protection and security)</subject><subject>Memory organisation. Data processing</subject><subject>Page Fault</subject><subject>Page Table</subject><subject>Software</subject><subject>Stable Storage</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354042735X</isbn><isbn>9783540427353</isbn><isbn>9783540454984</isbn><isbn>3540454985</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkM1PwzAMxcOnKGN3jr1wzEjipK0vSGjiS5o0DpvELcrSdB0rbUk6JP57sg1fLNl-T88_Qm45m3DG8nugSjIqlcSCKs2LEzLGvIA4PMzkKUl4xjkFkHhGrg8LkYP6OCcJAyYo5hIuSYKqUEIKkFdkHMIniwVCZUwm5GHhTRt64107pHM_1N26a02TTmtnt323aYdNu06H2ne7dZ0ug_N05n5ck76btfPhhlxUpglu_N9HZPn8tJi-0tn85W36OKM9L6CgBjhHV7KVYyZDrLgFxypZIee5wEqtpKrKzFmFBoVdSczKrEQwhbEcy6qEEbk7-vYmWNNUMbTdBN37zZfxv5rHx_Miw3g3Od6FuGpjQr3qum3QnOk9UQ06MtIHenpPNArg39h33zsXBu32ChtxeNPY2vRDfFMDy0FEEwFaMIQ_DKlz0w</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Skoglund, Espen</creator><creator>Ceelen, Christian</creator><creator>Liedtke, Jochen</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Transparent Orthogonal Checkpointing through User-Level Pagers</title><author>Skoglund, Espen ; Ceelen, Christian ; Liedtke, Jochen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1838-a3119ed0be0a699f1c3e0f4f911729f5b45fd6ec59a92cb496d6d93a8ac19dfd3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Address Space</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Device Driver</topic><topic>Exact sciences and technology</topic><topic>Memory and file management (including protection and security)</topic><topic>Memory organisation. Data processing</topic><topic>Page Fault</topic><topic>Page Table</topic><topic>Software</topic><topic>Stable Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skoglund, Espen</creatorcontrib><creatorcontrib>Ceelen, Christian</creatorcontrib><creatorcontrib>Liedtke, Jochen</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skoglund, Espen</au><au>Ceelen, Christian</au><au>Liedtke, Jochen</au><au>Dearle, Alan</au><au>Kirby, Graham N. C</au><au>Sjoberg, Dag I. K</au><au>Dearle, Alan</au><au>Kirby, Graham N. C.</au><au>Sjøberg, Dag I. K.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Transparent Orthogonal Checkpointing through User-Level Pagers</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2135</volume><spage>201</spage><epage>214</epage><pages>201-214</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354042735X</isbn><isbn>9783540427353</isbn><eisbn>9783540454984</eisbn><eisbn>3540454985</eisbn><abstract>Orthogonal persistence opens up the possibility for a number of applications. We present an approach for easily enabling transparent orthogonal persistence, basically on top of a modern μ-kernel. Not only are all data objects made persistent. Threads and tasks are also treated as normal data objects, making the threads and tasks persistent between system restarts. As such, the system is fault surviving. Persistence is achieved by the means of a transparent checkpoint server running in user-level. The checkpoint server takes regular snapshots of all user-level memory in the system, and also of the thread control blocks inside the kernel. The execution of the checkpointing itself is completely transparent to the μ-kernel, and only a few recovery mechanisms need to be implemented inside the kernel in order to support checkpointing. During system recovery (after a crash or a controlled shutdown), the consistency of threads is assured by the fact that all their user-level state (user memory) and kernel-level state (thread control blocks) will reside in stable storage. All other kernel state in the system can be reconstructed either upon initial recovery, or by standard page fault mechanisms during runtime.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45498-5_18</doi><oclcid>958524234</oclcid><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2001, Vol.2135, p.201-214 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14047869 |
source | Springer Books |
subjects | Address Space Applied sciences Computer science control theory systems Device Driver Exact sciences and technology Memory and file management (including protection and security) Memory organisation. Data processing Page Fault Page Table Software Stable Storage |
title | Transparent Orthogonal Checkpointing through User-Level Pagers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Transparent%20Orthogonal%20Checkpointing%20through%20User-Level%20Pagers&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Skoglund,%20Espen&rft.date=2001&rft.volume=2135&rft.spage=201&rft.epage=214&rft.pages=201-214&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354042735X&rft.isbn_list=9783540427353&rft_id=info:doi/10.1007/3-540-45498-5_18&rft_dat=%3Cproquest_pasca%3EEBC3073210_23_209%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540454984&rft.eisbn_list=3540454985&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073210_23_209&rft_id=info:pmid/&rfr_iscdi=true |