Distance Constrained Labeling of Precolored Trees
Graph colorings with distance constraints are motivated by the frequency assignment problem. The so called λ(p,q)-labeling problem asks for coloring the vertices of a given graph with integers from the range {0, 1, ..., λ} so that labels of adjacent vertices differ by at least p and labels of vertic...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | |
container_start_page | 285 |
container_title | |
container_volume | 2202 |
creator | Fiala, Jiři Kratochvíl, Jan Proskurowski, Andrzej |
description | Graph colorings with distance constraints are motivated by the frequency assignment problem. The so called λ(p,q)-labeling problem asks for coloring the vertices of a given graph with integers from the range {0, 1, ..., λ} so that labels of adjacent vertices differ by at least p and labels of vertices at distance 2 differ by at least q, where p, q are fixed integers and integer λ is part of the input. It is known that this problem is NP-complete for general graphs, even when λ is fixed, i.e., not part of the input, but polynomially solvable for trees for (p,q)=(2,1). It was conjectured that the general case is also polynomial for trees. We consider the precoloring extension version of the problem (i.e., when some vertices of the input tree are already precolored) and show that in this setting the cases q=1 and q > 1 behave di.erently: the problem is polynomial for q=1 and any p, and it is NP-complete for any p > q > 1. |
doi_str_mv | 10.1007/3-540-45446-2_18 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14047420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073047_24_295</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1838-34ad96679a3a1678c1c54b15fdd83126fe6b089d7ad60f3276533bee5f3248023</originalsourceid><addsrcrecordid>eNotULlOxDAQNacIy_aUaSi92B6fJVpOaSUoltpyEmcJhDjYoeDv8R7TzOjNm-M9hK4pWVBC1C1gwQnmgnOJmaX6CM2N0pDBHSaOUUElpRiAmxN0uWswqZg-RQUBwrBRHM5RYYQWDLQmF2ie0ifJAUxRzQtE77s0uaH25TIMaYquG3xTrlzl-27YlKEt36KvQx9ihtfR-3SFzlrXJz8_5Bl6f3xYL5_x6vXpZXm3wiPVoDFw1xgplXHgqFS6prXgFRVt02igTLZeVkSbRrlGkja_IwVA5b3INdeEwQzd7PeOLtWub2P-skt2jN23i3-WZq2KM5J5iz0v5daw8dFWIXwlS4ndmmjBZlvszjC7NTEPwGFxDD-_Pk3WbydqP2T5ff3hxsnHZIEoyCcs45YZAf97OGzJ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073047_24_295</pqid></control><display><type>book_chapter</type><title>Distance Constrained Labeling of Precolored Trees</title><source>Springer Books</source><creator>Fiala, Jiři ; Kratochvíl, Jan ; Proskurowski, Andrzej</creator><contributor>Restivo, Antonio ; Ronchi Della Rocca, Simona ; Roversi, Luca</contributor><creatorcontrib>Fiala, Jiři ; Kratochvíl, Jan ; Proskurowski, Andrzej ; Restivo, Antonio ; Ronchi Della Rocca, Simona ; Roversi, Luca</creatorcontrib><description>Graph colorings with distance constraints are motivated by the frequency assignment problem. The so called λ(p,q)-labeling problem asks for coloring the vertices of a given graph with integers from the range {0, 1, ..., λ} so that labels of adjacent vertices differ by at least p and labels of vertices at distance 2 differ by at least q, where p, q are fixed integers and integer λ is part of the input. It is known that this problem is NP-complete for general graphs, even when λ is fixed, i.e., not part of the input, but polynomially solvable for trees for (p,q)=(2,1). It was conjectured that the general case is also polynomial for trees. We consider the precoloring extension version of the problem (i.e., when some vertices of the input tree are already precolored) and show that in this setting the cases q=1 and q > 1 behave di.erently: the problem is polynomial for q=1 and any p, and it is NP-complete for any p > q > 1.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540426728</identifier><identifier>ISBN: 9783540426721</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540454465</identifier><identifier>EISBN: 3540454462</identifier><identifier>DOI: 10.1007/3-540-45446-2_18</identifier><identifier>OCLC: 958523880</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Information retrieval. Graph ; Operational research and scientific management ; Operational research. Management science ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2001, Vol.2202, p.285-292</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073047-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45446-2_18$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45446-2_18$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27912,38242,41429,42498</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14047420$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Restivo, Antonio</contributor><contributor>Ronchi Della Rocca, Simona</contributor><contributor>Roversi, Luca</contributor><creatorcontrib>Fiala, Jiři</creatorcontrib><creatorcontrib>Kratochvíl, Jan</creatorcontrib><creatorcontrib>Proskurowski, Andrzej</creatorcontrib><title>Distance Constrained Labeling of Precolored Trees</title><title>Lecture notes in computer science</title><description>Graph colorings with distance constraints are motivated by the frequency assignment problem. The so called λ(p,q)-labeling problem asks for coloring the vertices of a given graph with integers from the range {0, 1, ..., λ} so that labels of adjacent vertices differ by at least p and labels of vertices at distance 2 differ by at least q, where p, q are fixed integers and integer λ is part of the input. It is known that this problem is NP-complete for general graphs, even when λ is fixed, i.e., not part of the input, but polynomially solvable for trees for (p,q)=(2,1). It was conjectured that the general case is also polynomial for trees. We consider the precoloring extension version of the problem (i.e., when some vertices of the input tree are already precolored) and show that in this setting the cases q=1 and q > 1 behave di.erently: the problem is polynomial for q=1 and any p, and it is NP-complete for any p > q > 1.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Information retrieval. Graph</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540426728</isbn><isbn>9783540426721</isbn><isbn>9783540454465</isbn><isbn>3540454462</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotULlOxDAQNacIy_aUaSi92B6fJVpOaSUoltpyEmcJhDjYoeDv8R7TzOjNm-M9hK4pWVBC1C1gwQnmgnOJmaX6CM2N0pDBHSaOUUElpRiAmxN0uWswqZg-RQUBwrBRHM5RYYQWDLQmF2ie0ifJAUxRzQtE77s0uaH25TIMaYquG3xTrlzl-27YlKEt36KvQx9ihtfR-3SFzlrXJz8_5Bl6f3xYL5_x6vXpZXm3wiPVoDFw1xgplXHgqFS6prXgFRVt02igTLZeVkSbRrlGkja_IwVA5b3INdeEwQzd7PeOLtWub2P-skt2jN23i3-WZq2KM5J5iz0v5daw8dFWIXwlS4ndmmjBZlvszjC7NTEPwGFxDD-_Pk3WbydqP2T5ff3hxsnHZIEoyCcs45YZAf97OGzJ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Fiala, Jiři</creator><creator>Kratochvíl, Jan</creator><creator>Proskurowski, Andrzej</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Distance Constrained Labeling of Precolored Trees</title><author>Fiala, Jiři ; Kratochvíl, Jan ; Proskurowski, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1838-34ad96679a3a1678c1c54b15fdd83126fe6b089d7ad60f3276533bee5f3248023</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Information retrieval. Graph</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiala, Jiři</creatorcontrib><creatorcontrib>Kratochvíl, Jan</creatorcontrib><creatorcontrib>Proskurowski, Andrzej</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiala, Jiři</au><au>Kratochvíl, Jan</au><au>Proskurowski, Andrzej</au><au>Restivo, Antonio</au><au>Ronchi Della Rocca, Simona</au><au>Roversi, Luca</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Distance Constrained Labeling of Precolored Trees</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2202</volume><spage>285</spage><epage>292</epage><pages>285-292</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540426728</isbn><isbn>9783540426721</isbn><eisbn>9783540454465</eisbn><eisbn>3540454462</eisbn><abstract>Graph colorings with distance constraints are motivated by the frequency assignment problem. The so called λ(p,q)-labeling problem asks for coloring the vertices of a given graph with integers from the range {0, 1, ..., λ} so that labels of adjacent vertices differ by at least p and labels of vertices at distance 2 differ by at least q, where p, q are fixed integers and integer λ is part of the input. It is known that this problem is NP-complete for general graphs, even when λ is fixed, i.e., not part of the input, but polynomially solvable for trees for (p,q)=(2,1). It was conjectured that the general case is also polynomial for trees. We consider the precoloring extension version of the problem (i.e., when some vertices of the input tree are already precolored) and show that in this setting the cases q=1 and q > 1 behave di.erently: the problem is polynomial for q=1 and any p, and it is NP-complete for any p > q > 1.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45446-2_18</doi><oclcid>958523880</oclcid><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2001, Vol.2202, p.285-292 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14047420 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Flows in networks. Combinatorial problems Information retrieval. Graph Operational research and scientific management Operational research. Management science Theoretical computing |
title | Distance Constrained Labeling of Precolored Trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Distance%20Constrained%20Labeling%20of%20Precolored%20Trees&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Fiala,%20Ji%C5%99i&rft.date=2001&rft.volume=2202&rft.spage=285&rft.epage=292&rft.pages=285-292&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540426728&rft.isbn_list=9783540426721&rft_id=info:doi/10.1007/3-540-45446-2_18&rft_dat=%3Cproquest_pasca%3EEBC3073047_24_295%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540454465&rft.eisbn_list=3540454462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073047_24_295&rft_id=info:pmid/&rfr_iscdi=true |