Distance Constrained Labeling of Precolored Trees

Graph colorings with distance constraints are motivated by the frequency assignment problem. The so called λ(p,q)-labeling problem asks for coloring the vertices of a given graph with integers from the range {0, 1, ..., λ} so that labels of adjacent vertices differ by at least p and labels of vertic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fiala, Jiři, Kratochvíl, Jan, Proskurowski, Andrzej
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue
container_start_page 285
container_title
container_volume 2202
creator Fiala, Jiři
Kratochvíl, Jan
Proskurowski, Andrzej
description Graph colorings with distance constraints are motivated by the frequency assignment problem. The so called λ(p,q)-labeling problem asks for coloring the vertices of a given graph with integers from the range {0, 1, ..., λ} so that labels of adjacent vertices differ by at least p and labels of vertices at distance 2 differ by at least q, where p, q are fixed integers and integer λ is part of the input. It is known that this problem is NP-complete for general graphs, even when λ is fixed, i.e., not part of the input, but polynomially solvable for trees for (p,q)=(2,1). It was conjectured that the general case is also polynomial for trees. We consider the precoloring extension version of the problem (i.e., when some vertices of the input tree are already precolored) and show that in this setting the cases q=1 and q > 1 behave di.erently: the problem is polynomial for q=1 and any p, and it is NP-complete for any p > q > 1.
doi_str_mv 10.1007/3-540-45446-2_18
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14047420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073047_24_295</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1838-34ad96679a3a1678c1c54b15fdd83126fe6b089d7ad60f3276533bee5f3248023</originalsourceid><addsrcrecordid>eNotULlOxDAQNacIy_aUaSi92B6fJVpOaSUoltpyEmcJhDjYoeDv8R7TzOjNm-M9hK4pWVBC1C1gwQnmgnOJmaX6CM2N0pDBHSaOUUElpRiAmxN0uWswqZg-RQUBwrBRHM5RYYQWDLQmF2ie0ifJAUxRzQtE77s0uaH25TIMaYquG3xTrlzl-27YlKEt36KvQx9ihtfR-3SFzlrXJz8_5Bl6f3xYL5_x6vXpZXm3wiPVoDFw1xgplXHgqFS6prXgFRVt02igTLZeVkSbRrlGkja_IwVA5b3INdeEwQzd7PeOLtWub2P-skt2jN23i3-WZq2KM5J5iz0v5daw8dFWIXwlS4ndmmjBZlvszjC7NTEPwGFxDD-_Pk3WbydqP2T5ff3hxsnHZIEoyCcs45YZAf97OGzJ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073047_24_295</pqid></control><display><type>book_chapter</type><title>Distance Constrained Labeling of Precolored Trees</title><source>Springer Books</source><creator>Fiala, Jiři ; Kratochvíl, Jan ; Proskurowski, Andrzej</creator><contributor>Restivo, Antonio ; Ronchi Della Rocca, Simona ; Roversi, Luca</contributor><creatorcontrib>Fiala, Jiři ; Kratochvíl, Jan ; Proskurowski, Andrzej ; Restivo, Antonio ; Ronchi Della Rocca, Simona ; Roversi, Luca</creatorcontrib><description>Graph colorings with distance constraints are motivated by the frequency assignment problem. The so called λ(p,q)-labeling problem asks for coloring the vertices of a given graph with integers from the range {0, 1, ..., λ} so that labels of adjacent vertices differ by at least p and labels of vertices at distance 2 differ by at least q, where p, q are fixed integers and integer λ is part of the input. It is known that this problem is NP-complete for general graphs, even when λ is fixed, i.e., not part of the input, but polynomially solvable for trees for (p,q)=(2,1). It was conjectured that the general case is also polynomial for trees. We consider the precoloring extension version of the problem (i.e., when some vertices of the input tree are already precolored) and show that in this setting the cases q=1 and q &gt; 1 behave di.erently: the problem is polynomial for q=1 and any p, and it is NP-complete for any p &gt; q &gt; 1.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540426728</identifier><identifier>ISBN: 9783540426721</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540454465</identifier><identifier>EISBN: 3540454462</identifier><identifier>DOI: 10.1007/3-540-45446-2_18</identifier><identifier>OCLC: 958523880</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Information retrieval. Graph ; Operational research and scientific management ; Operational research. Management science ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2001, Vol.2202, p.285-292</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073047-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45446-2_18$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45446-2_18$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27912,38242,41429,42498</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14047420$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Restivo, Antonio</contributor><contributor>Ronchi Della Rocca, Simona</contributor><contributor>Roversi, Luca</contributor><creatorcontrib>Fiala, Jiři</creatorcontrib><creatorcontrib>Kratochvíl, Jan</creatorcontrib><creatorcontrib>Proskurowski, Andrzej</creatorcontrib><title>Distance Constrained Labeling of Precolored Trees</title><title>Lecture notes in computer science</title><description>Graph colorings with distance constraints are motivated by the frequency assignment problem. The so called λ(p,q)-labeling problem asks for coloring the vertices of a given graph with integers from the range {0, 1, ..., λ} so that labels of adjacent vertices differ by at least p and labels of vertices at distance 2 differ by at least q, where p, q are fixed integers and integer λ is part of the input. It is known that this problem is NP-complete for general graphs, even when λ is fixed, i.e., not part of the input, but polynomially solvable for trees for (p,q)=(2,1). It was conjectured that the general case is also polynomial for trees. We consider the precoloring extension version of the problem (i.e., when some vertices of the input tree are already precolored) and show that in this setting the cases q=1 and q &gt; 1 behave di.erently: the problem is polynomial for q=1 and any p, and it is NP-complete for any p &gt; q &gt; 1.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Information retrieval. Graph</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540426728</isbn><isbn>9783540426721</isbn><isbn>9783540454465</isbn><isbn>3540454462</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotULlOxDAQNacIy_aUaSi92B6fJVpOaSUoltpyEmcJhDjYoeDv8R7TzOjNm-M9hK4pWVBC1C1gwQnmgnOJmaX6CM2N0pDBHSaOUUElpRiAmxN0uWswqZg-RQUBwrBRHM5RYYQWDLQmF2ie0ifJAUxRzQtE77s0uaH25TIMaYquG3xTrlzl-27YlKEt36KvQx9ihtfR-3SFzlrXJz8_5Bl6f3xYL5_x6vXpZXm3wiPVoDFw1xgplXHgqFS6prXgFRVt02igTLZeVkSbRrlGkja_IwVA5b3INdeEwQzd7PeOLtWub2P-skt2jN23i3-WZq2KM5J5iz0v5daw8dFWIXwlS4ndmmjBZlvszjC7NTEPwGFxDD-_Pk3WbydqP2T5ff3hxsnHZIEoyCcs45YZAf97OGzJ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Fiala, Jiři</creator><creator>Kratochvíl, Jan</creator><creator>Proskurowski, Andrzej</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Distance Constrained Labeling of Precolored Trees</title><author>Fiala, Jiři ; Kratochvíl, Jan ; Proskurowski, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1838-34ad96679a3a1678c1c54b15fdd83126fe6b089d7ad60f3276533bee5f3248023</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Information retrieval. Graph</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiala, Jiři</creatorcontrib><creatorcontrib>Kratochvíl, Jan</creatorcontrib><creatorcontrib>Proskurowski, Andrzej</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiala, Jiři</au><au>Kratochvíl, Jan</au><au>Proskurowski, Andrzej</au><au>Restivo, Antonio</au><au>Ronchi Della Rocca, Simona</au><au>Roversi, Luca</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Distance Constrained Labeling of Precolored Trees</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2202</volume><spage>285</spage><epage>292</epage><pages>285-292</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540426728</isbn><isbn>9783540426721</isbn><eisbn>9783540454465</eisbn><eisbn>3540454462</eisbn><abstract>Graph colorings with distance constraints are motivated by the frequency assignment problem. The so called λ(p,q)-labeling problem asks for coloring the vertices of a given graph with integers from the range {0, 1, ..., λ} so that labels of adjacent vertices differ by at least p and labels of vertices at distance 2 differ by at least q, where p, q are fixed integers and integer λ is part of the input. It is known that this problem is NP-complete for general graphs, even when λ is fixed, i.e., not part of the input, but polynomially solvable for trees for (p,q)=(2,1). It was conjectured that the general case is also polynomial for trees. We consider the precoloring extension version of the problem (i.e., when some vertices of the input tree are already precolored) and show that in this setting the cases q=1 and q &gt; 1 behave di.erently: the problem is polynomial for q=1 and any p, and it is NP-complete for any p &gt; q &gt; 1.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45446-2_18</doi><oclcid>958523880</oclcid><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2001, Vol.2202, p.285-292
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14047420
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Flows in networks. Combinatorial problems
Information retrieval. Graph
Operational research and scientific management
Operational research. Management science
Theoretical computing
title Distance Constrained Labeling of Precolored Trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Distance%20Constrained%20Labeling%20of%20Precolored%20Trees&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Fiala,%20Ji%C5%99i&rft.date=2001&rft.volume=2202&rft.spage=285&rft.epage=292&rft.pages=285-292&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540426728&rft.isbn_list=9783540426721&rft_id=info:doi/10.1007/3-540-45446-2_18&rft_dat=%3Cproquest_pasca%3EEBC3073047_24_295%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540454465&rft.eisbn_list=3540454462&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073047_24_295&rft_id=info:pmid/&rfr_iscdi=true