Robust Obstacle Detection from Stereoscopic Image Sequences Using Kalman Filtering

In this paper a new approach for video based obstacle detection for a mobile robot is proposed, based on probabilistic evaluation of image data. Apart from the measurement data, also their uncertainties are taken into account. Evaluation is achieved using Kalman filter technique combining the result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Suppes, Alexander, Suhling, Frank, Hötter, Michael
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue
container_start_page 385
container_title
container_volume 2191
creator Suppes, Alexander
Suhling, Frank
Hötter, Michael
description In this paper a new approach for video based obstacle detection for a mobile robot is proposed, based on probabilistic evaluation of image data. Apart from the measurement data, also their uncertainties are taken into account. Evaluation is achieved using Kalman filter technique combining the results of video data processing and robot motion data. Obstacle detection is realised by computing obstacle probability and subsequent application of a threshold operator. The first experiments show remarkably stable obstacle detection.
doi_str_mv 10.1007/3-540-45404-7_51
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14047047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3061676_53_400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2751-332b27d64491a76e76adee589bb8118e54373c867ea8d22280782349606c6a23</originalsourceid><addsrcrecordid>eNqNkElPwzAQhc0qqtI7R184ptger0fELpCQoJwtx52WQJqEOBz49zgUiSuWF9l-bzTvI-SEszlnzJxBoSQrZN5kYbziO2TmjIXx_rN2yYRrzgsA6fb-_oRymu2TCQMmCmckHJKJ4OBAcmWPyCylN5YHMKWlm5Cnp7b8TAN9LNMQYo30EgeMQ9U2dNW3G_o8YI9tim1XRXq3CWukz_jxiU3ERF9S1azpfag3oaHXVZ21-eGYHKxCnXD2e07J4vpqcXFbPDze3F2cPxRRGDX2LUphllpKx4PRaHRYIirrytJyblFJMBCtNhjsUghhmbEiZ9VMRx0ETMnptmwXUgz1qg9NrJLv-moT-i_PMwuTZ9bNt7rUjd1h78u2fU-eMz9y9uAzNv_D1I-cs0H-Fu7bnDQNHkdHxGboQx1fQ5dzJq-FBWeEl5p7yUYb_McGTHNttFeQXQy-ATU5itU</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3061676_53_400</pqid></control><display><type>book_chapter</type><title>Robust Obstacle Detection from Stereoscopic Image Sequences Using Kalman Filtering</title><source>Springer Books</source><creator>Suppes, Alexander ; Suhling, Frank ; Hötter, Michael</creator><contributor>Florczyk, Stefan ; Radig, Bernd ; Florczyk, Stefan ; Radig, Bernd</contributor><creatorcontrib>Suppes, Alexander ; Suhling, Frank ; Hötter, Michael ; Florczyk, Stefan ; Radig, Bernd ; Florczyk, Stefan ; Radig, Bernd</creatorcontrib><description>In this paper a new approach for video based obstacle detection for a mobile robot is proposed, based on probabilistic evaluation of image data. Apart from the measurement data, also their uncertainties are taken into account. Evaluation is achieved using Kalman filter technique combining the results of video data processing and robot motion data. Obstacle detection is realised by computing obstacle probability and subsequent application of a threshold operator. The first experiments show remarkably stable obstacle detection.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540425960</identifier><identifier>ISBN: 3540425969</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540454045</identifier><identifier>EISBN: 3540454047</identifier><identifier>DOI: 10.1007/3-540-45404-7_51</identifier><identifier>OCLC: 213934158</identifier><identifier>LCCallNum: TA1650 -- .D35 2001eb</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Computing: general ; Control theory. Systems ; Exact sciences and technology ; Image processing ; Kalman filter ; obstacle detection ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Robotics ; stereo based vision</subject><ispartof>Lecture notes in computer science, 2001, Vol.2191, p.385-391</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2751-332b27d64491a76e76adee589bb8118e54373c867ea8d22280782349606c6a23</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3061676-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45404-7_51$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45404-7_51$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14047047$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Florczyk, Stefan</contributor><contributor>Radig, Bernd</contributor><contributor>Florczyk, Stefan</contributor><contributor>Radig, Bernd</contributor><creatorcontrib>Suppes, Alexander</creatorcontrib><creatorcontrib>Suhling, Frank</creatorcontrib><creatorcontrib>Hötter, Michael</creatorcontrib><title>Robust Obstacle Detection from Stereoscopic Image Sequences Using Kalman Filtering</title><title>Lecture notes in computer science</title><description>In this paper a new approach for video based obstacle detection for a mobile robot is proposed, based on probabilistic evaluation of image data. Apart from the measurement data, also their uncertainties are taken into account. Evaluation is achieved using Kalman filter technique combining the results of video data processing and robot motion data. Obstacle detection is realised by computing obstacle probability and subsequent application of a threshold operator. The first experiments show remarkably stable obstacle detection.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computing: general</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Image processing</subject><subject>Kalman filter</subject><subject>obstacle detection</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robotics</subject><subject>stereo based vision</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540425960</isbn><isbn>3540425969</isbn><isbn>9783540454045</isbn><isbn>3540454047</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkElPwzAQhc0qqtI7R184ptger0fELpCQoJwtx52WQJqEOBz49zgUiSuWF9l-bzTvI-SEszlnzJxBoSQrZN5kYbziO2TmjIXx_rN2yYRrzgsA6fb-_oRymu2TCQMmCmckHJKJ4OBAcmWPyCylN5YHMKWlm5Cnp7b8TAN9LNMQYo30EgeMQ9U2dNW3G_o8YI9tim1XRXq3CWukz_jxiU3ERF9S1azpfag3oaHXVZ21-eGYHKxCnXD2e07J4vpqcXFbPDze3F2cPxRRGDX2LUphllpKx4PRaHRYIirrytJyblFJMBCtNhjsUghhmbEiZ9VMRx0ETMnptmwXUgz1qg9NrJLv-moT-i_PMwuTZ9bNt7rUjd1h78u2fU-eMz9y9uAzNv_D1I-cs0H-Fu7bnDQNHkdHxGboQx1fQ5dzJq-FBWeEl5p7yUYb_McGTHNttFeQXQy-ATU5itU</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Suppes, Alexander</creator><creator>Suhling, Frank</creator><creator>Hötter, Michael</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Robust Obstacle Detection from Stereoscopic Image Sequences Using Kalman Filtering</title><author>Suppes, Alexander ; Suhling, Frank ; Hötter, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2751-332b27d64491a76e76adee589bb8118e54373c867ea8d22280782349606c6a23</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computing: general</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Image processing</topic><topic>Kalman filter</topic><topic>obstacle detection</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robotics</topic><topic>stereo based vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suppes, Alexander</creatorcontrib><creatorcontrib>Suhling, Frank</creatorcontrib><creatorcontrib>Hötter, Michael</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suppes, Alexander</au><au>Suhling, Frank</au><au>Hötter, Michael</au><au>Florczyk, Stefan</au><au>Radig, Bernd</au><au>Florczyk, Stefan</au><au>Radig, Bernd</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Robust Obstacle Detection from Stereoscopic Image Sequences Using Kalman Filtering</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2191</volume><spage>385</spage><epage>391</epage><pages>385-391</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540425960</isbn><isbn>3540425969</isbn><eisbn>9783540454045</eisbn><eisbn>3540454047</eisbn><abstract>In this paper a new approach for video based obstacle detection for a mobile robot is proposed, based on probabilistic evaluation of image data. Apart from the measurement data, also their uncertainties are taken into account. Evaluation is achieved using Kalman filter technique combining the results of video data processing and robot motion data. Obstacle detection is realised by computing obstacle probability and subsequent application of a threshold operator. The first experiments show remarkably stable obstacle detection.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45404-7_51</doi><oclcid>213934158</oclcid><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2001, Vol.2191, p.385-391
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14047047
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Computing: general
Control theory. Systems
Exact sciences and technology
Image processing
Kalman filter
obstacle detection
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Robotics
stereo based vision
title Robust Obstacle Detection from Stereoscopic Image Sequences Using Kalman Filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Robust%20Obstacle%20Detection%20from%20Stereoscopic%20Image%20Sequences%20Using%20Kalman%20Filtering&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Suppes,%20Alexander&rft.date=2001&rft.volume=2191&rft.spage=385&rft.epage=391&rft.pages=385-391&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540425960&rft.isbn_list=3540425969&rft_id=info:doi/10.1007/3-540-45404-7_51&rft_dat=%3Cproquest_pasca%3EEBC3061676_53_400%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540454045&rft.eisbn_list=3540454047&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3061676_53_400&rft_id=info:pmid/&rfr_iscdi=true