Shape Constrained Deformable Models for 3D Medical Image Segmentation
To improve the robustness of segmentation methods, more and more methods use prior knowledge. We present an approach which embeds an active shape model into an elastically deformable surface model, and combines the advantages of both approaches. The shape model constrains the flexibility of the surf...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | |
container_start_page | 380 |
container_title | |
container_volume | |
creator | Weese, Jürgen Kaus, Michael Lorenz, Christian Lobregt, Steven Truyen, Roel Pekar, Vladimir |
description | To improve the robustness of segmentation methods, more and more methods use prior knowledge. We present an approach which embeds an active shape model into an elastically deformable surface model, and combines the advantages of both approaches. The shape model constrains the flexibility of the surface mesh representing the deformable model and maintains an optimal distribution of mesh vertices. A specific external energy which attracts the deformable model to locally detected surfaces, reduces the danger that the mesh is trapped by false object boundaries. Examples are shown, and furthermore a validation study for the segmentation of vertebrae in CT images is presented. With the exception of a few problematic areas, the algorithm leads reliably to a very good overall segmentation. |
doi_str_mv | 10.1007/3-540-45729-1_38 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_14045836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14045836</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1398-117f3603c7d73078031baf67a3575fd28684d7c6f0ad36c3af1ed8c05d75aacd3</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhs2XRCndGb0wupxzSWyPqC1QqRVDYbausV0C-VLchX_ftEViOt37vDqdHsYeJEwlgHpCkaUg0kwlRkiL-oJNjNI4hKfMXLKRzKUUiKm5-mdJMuBrNgKERBiV4i27i_EbABJlkhFbbL6o83zWNnHfU9l4x-c-tH1N28rzdet8Ffmwc5zztXdlQRVf1rTzfON3tW_2tC_b5p7dBKqin_zNMft8WXzM3sTq_XU5e16JTqLRQkoVMAcslFMISgPKLYVcEWYqCy7RuU6dKvIA5DAvkIL0TheQOZURFQ7H7PF8t6M4fBJ6aooy2q4va-p_rTzK0JgPvem5FwfU7Hxvt237E60Ee5Rp0Q5u7EmcPcrEAxi4YLY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shape Constrained Deformable Models for 3D Medical Image Segmentation</title><source>Springer Books</source><creator>Weese, Jürgen ; Kaus, Michael ; Lorenz, Christian ; Lobregt, Steven ; Truyen, Roel ; Pekar, Vladimir</creator><contributor>Insana, Michael F. ; Leahy, Richard M.</contributor><creatorcontrib>Weese, Jürgen ; Kaus, Michael ; Lorenz, Christian ; Lobregt, Steven ; Truyen, Roel ; Pekar, Vladimir ; Insana, Michael F. ; Leahy, Richard M.</creatorcontrib><description>To improve the robustness of segmentation methods, more and more methods use prior knowledge. We present an approach which embeds an active shape model into an elastically deformable surface model, and combines the advantages of both approaches. The shape model constrains the flexibility of the surface mesh representing the deformable model and maintains an optimal distribution of mesh vertices. A specific external energy which attracts the deformable model to locally detected surfaces, reduces the danger that the mesh is trapped by false object boundaries. Examples are shown, and furthermore a validation study for the segmentation of vertebrae in CT images is presented. With the exception of a few problematic areas, the algorithm leads reliably to a very good overall segmentation.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540422457</identifier><identifier>ISBN: 3540422455</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540457299</identifier><identifier>EISBN: 3540457291</identifier><identifier>DOI: 10.1007/3-540-45729-1_38</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and medical sciences ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Miscellaneous. Technology ; Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><ispartof>Information Processing in Medical Imaging, 2001, p.380-387</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45729-1_38$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45729-1_38$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14045836$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Insana, Michael F.</contributor><contributor>Leahy, Richard M.</contributor><creatorcontrib>Weese, Jürgen</creatorcontrib><creatorcontrib>Kaus, Michael</creatorcontrib><creatorcontrib>Lorenz, Christian</creatorcontrib><creatorcontrib>Lobregt, Steven</creatorcontrib><creatorcontrib>Truyen, Roel</creatorcontrib><creatorcontrib>Pekar, Vladimir</creatorcontrib><title>Shape Constrained Deformable Models for 3D Medical Image Segmentation</title><title>Information Processing in Medical Imaging</title><description>To improve the robustness of segmentation methods, more and more methods use prior knowledge. We present an approach which embeds an active shape model into an elastically deformable surface model, and combines the advantages of both approaches. The shape model constrains the flexibility of the surface mesh representing the deformable model and maintains an optimal distribution of mesh vertices. A specific external energy which attracts the deformable model to locally detected surfaces, reduces the danger that the mesh is trapped by false object boundaries. Examples are shown, and furthermore a validation study for the segmentation of vertebrae in CT images is presented. With the exception of a few problematic areas, the algorithm leads reliably to a very good overall segmentation.</description><subject>Biological and medical sciences</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540422457</isbn><isbn>3540422455</isbn><isbn>9783540457299</isbn><isbn>3540457291</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkD1PwzAQhs2XRCndGb0wupxzSWyPqC1QqRVDYbausV0C-VLchX_ftEViOt37vDqdHsYeJEwlgHpCkaUg0kwlRkiL-oJNjNI4hKfMXLKRzKUUiKm5-mdJMuBrNgKERBiV4i27i_EbABJlkhFbbL6o83zWNnHfU9l4x-c-tH1N28rzdet8Ffmwc5zztXdlQRVf1rTzfON3tW_2tC_b5p7dBKqin_zNMft8WXzM3sTq_XU5e16JTqLRQkoVMAcslFMISgPKLYVcEWYqCy7RuU6dKvIA5DAvkIL0TheQOZURFQ7H7PF8t6M4fBJ6aooy2q4va-p_rTzK0JgPvem5FwfU7Hxvt237E60Ee5Rp0Q5u7EmcPcrEAxi4YLY</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Weese, Jürgen</creator><creator>Kaus, Michael</creator><creator>Lorenz, Christian</creator><creator>Lobregt, Steven</creator><creator>Truyen, Roel</creator><creator>Pekar, Vladimir</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Shape Constrained Deformable Models for 3D Medical Image Segmentation</title><author>Weese, Jürgen ; Kaus, Michael ; Lorenz, Christian ; Lobregt, Steven ; Truyen, Roel ; Pekar, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1398-117f3603c7d73078031baf67a3575fd28684d7c6f0ad36c3af1ed8c05d75aacd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological and medical sciences</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weese, Jürgen</creatorcontrib><creatorcontrib>Kaus, Michael</creatorcontrib><creatorcontrib>Lorenz, Christian</creatorcontrib><creatorcontrib>Lobregt, Steven</creatorcontrib><creatorcontrib>Truyen, Roel</creatorcontrib><creatorcontrib>Pekar, Vladimir</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weese, Jürgen</au><au>Kaus, Michael</au><au>Lorenz, Christian</au><au>Lobregt, Steven</au><au>Truyen, Roel</au><au>Pekar, Vladimir</au><au>Insana, Michael F.</au><au>Leahy, Richard M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shape Constrained Deformable Models for 3D Medical Image Segmentation</atitle><btitle>Information Processing in Medical Imaging</btitle><date>2001</date><risdate>2001</risdate><spage>380</spage><epage>387</epage><pages>380-387</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540422457</isbn><isbn>3540422455</isbn><eisbn>9783540457299</eisbn><eisbn>3540457291</eisbn><abstract>To improve the robustness of segmentation methods, more and more methods use prior knowledge. We present an approach which embeds an active shape model into an elastically deformable surface model, and combines the advantages of both approaches. The shape model constrains the flexibility of the surface mesh representing the deformable model and maintains an optimal distribution of mesh vertices. A specific external energy which attracts the deformable model to locally detected surfaces, reduces the danger that the mesh is trapped by false object boundaries. Examples are shown, and furthermore a validation study for the segmentation of vertebrae in CT images is presented. With the exception of a few problematic areas, the algorithm leads reliably to a very good overall segmentation.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-45729-1_38</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Information Processing in Medical Imaging, 2001, p.380-387 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14045836 |
source | Springer Books |
subjects | Biological and medical sciences Investigative techniques, diagnostic techniques (general aspects) Medical sciences Miscellaneous. Technology Radiodiagnosis. Nmr imagery. Nmr spectrometry |
title | Shape Constrained Deformable Models for 3D Medical Image Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shape%20Constrained%20Deformable%20Models%20for%203D%20Medical%20Image%20Segmentation&rft.btitle=Information%20Processing%20in%20Medical%20Imaging&rft.au=Weese,%20J%C3%BCrgen&rft.date=2001&rft.spage=380&rft.epage=387&rft.pages=380-387&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540422457&rft.isbn_list=3540422455&rft_id=info:doi/10.1007/3-540-45729-1_38&rft_dat=%3Cpascalfrancis_sprin%3E14045836%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540457299&rft.eisbn_list=3540457291&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |