Shape Constrained Deformable Models for 3D Medical Image Segmentation

To improve the robustness of segmentation methods, more and more methods use prior knowledge. We present an approach which embeds an active shape model into an elastically deformable surface model, and combines the advantages of both approaches. The shape model constrains the flexibility of the surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weese, Jürgen, Kaus, Michael, Lorenz, Christian, Lobregt, Steven, Truyen, Roel, Pekar, Vladimir
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue
container_start_page 380
container_title
container_volume
creator Weese, Jürgen
Kaus, Michael
Lorenz, Christian
Lobregt, Steven
Truyen, Roel
Pekar, Vladimir
description To improve the robustness of segmentation methods, more and more methods use prior knowledge. We present an approach which embeds an active shape model into an elastically deformable surface model, and combines the advantages of both approaches. The shape model constrains the flexibility of the surface mesh representing the deformable model and maintains an optimal distribution of mesh vertices. A specific external energy which attracts the deformable model to locally detected surfaces, reduces the danger that the mesh is trapped by false object boundaries. Examples are shown, and furthermore a validation study for the segmentation of vertebrae in CT images is presented. With the exception of a few problematic areas, the algorithm leads reliably to a very good overall segmentation.
doi_str_mv 10.1007/3-540-45729-1_38
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_14045836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14045836</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1398-117f3603c7d73078031baf67a3575fd28684d7c6f0ad36c3af1ed8c05d75aacd3</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhs2XRCndGb0wupxzSWyPqC1QqRVDYbausV0C-VLchX_ftEViOt37vDqdHsYeJEwlgHpCkaUg0kwlRkiL-oJNjNI4hKfMXLKRzKUUiKm5-mdJMuBrNgKERBiV4i27i_EbABJlkhFbbL6o83zWNnHfU9l4x-c-tH1N28rzdet8Ffmwc5zztXdlQRVf1rTzfON3tW_2tC_b5p7dBKqin_zNMft8WXzM3sTq_XU5e16JTqLRQkoVMAcslFMISgPKLYVcEWYqCy7RuU6dKvIA5DAvkIL0TheQOZURFQ7H7PF8t6M4fBJ6aooy2q4va-p_rTzK0JgPvem5FwfU7Hxvt237E60Ee5Rp0Q5u7EmcPcrEAxi4YLY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shape Constrained Deformable Models for 3D Medical Image Segmentation</title><source>Springer Books</source><creator>Weese, Jürgen ; Kaus, Michael ; Lorenz, Christian ; Lobregt, Steven ; Truyen, Roel ; Pekar, Vladimir</creator><contributor>Insana, Michael F. ; Leahy, Richard M.</contributor><creatorcontrib>Weese, Jürgen ; Kaus, Michael ; Lorenz, Christian ; Lobregt, Steven ; Truyen, Roel ; Pekar, Vladimir ; Insana, Michael F. ; Leahy, Richard M.</creatorcontrib><description>To improve the robustness of segmentation methods, more and more methods use prior knowledge. We present an approach which embeds an active shape model into an elastically deformable surface model, and combines the advantages of both approaches. The shape model constrains the flexibility of the surface mesh representing the deformable model and maintains an optimal distribution of mesh vertices. A specific external energy which attracts the deformable model to locally detected surfaces, reduces the danger that the mesh is trapped by false object boundaries. Examples are shown, and furthermore a validation study for the segmentation of vertebrae in CT images is presented. With the exception of a few problematic areas, the algorithm leads reliably to a very good overall segmentation.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540422457</identifier><identifier>ISBN: 3540422455</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540457299</identifier><identifier>EISBN: 3540457291</identifier><identifier>DOI: 10.1007/3-540-45729-1_38</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and medical sciences ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Miscellaneous. Technology ; Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><ispartof>Information Processing in Medical Imaging, 2001, p.380-387</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45729-1_38$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45729-1_38$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14045836$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Insana, Michael F.</contributor><contributor>Leahy, Richard M.</contributor><creatorcontrib>Weese, Jürgen</creatorcontrib><creatorcontrib>Kaus, Michael</creatorcontrib><creatorcontrib>Lorenz, Christian</creatorcontrib><creatorcontrib>Lobregt, Steven</creatorcontrib><creatorcontrib>Truyen, Roel</creatorcontrib><creatorcontrib>Pekar, Vladimir</creatorcontrib><title>Shape Constrained Deformable Models for 3D Medical Image Segmentation</title><title>Information Processing in Medical Imaging</title><description>To improve the robustness of segmentation methods, more and more methods use prior knowledge. We present an approach which embeds an active shape model into an elastically deformable surface model, and combines the advantages of both approaches. The shape model constrains the flexibility of the surface mesh representing the deformable model and maintains an optimal distribution of mesh vertices. A specific external energy which attracts the deformable model to locally detected surfaces, reduces the danger that the mesh is trapped by false object boundaries. Examples are shown, and furthermore a validation study for the segmentation of vertebrae in CT images is presented. With the exception of a few problematic areas, the algorithm leads reliably to a very good overall segmentation.</description><subject>Biological and medical sciences</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540422457</isbn><isbn>3540422455</isbn><isbn>9783540457299</isbn><isbn>3540457291</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkD1PwzAQhs2XRCndGb0wupxzSWyPqC1QqRVDYbausV0C-VLchX_ftEViOt37vDqdHsYeJEwlgHpCkaUg0kwlRkiL-oJNjNI4hKfMXLKRzKUUiKm5-mdJMuBrNgKERBiV4i27i_EbABJlkhFbbL6o83zWNnHfU9l4x-c-tH1N28rzdet8Ffmwc5zztXdlQRVf1rTzfON3tW_2tC_b5p7dBKqin_zNMft8WXzM3sTq_XU5e16JTqLRQkoVMAcslFMISgPKLYVcEWYqCy7RuU6dKvIA5DAvkIL0TheQOZURFQ7H7PF8t6M4fBJ6aooy2q4va-p_rTzK0JgPvem5FwfU7Hxvt237E60Ee5Rp0Q5u7EmcPcrEAxi4YLY</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Weese, Jürgen</creator><creator>Kaus, Michael</creator><creator>Lorenz, Christian</creator><creator>Lobregt, Steven</creator><creator>Truyen, Roel</creator><creator>Pekar, Vladimir</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Shape Constrained Deformable Models for 3D Medical Image Segmentation</title><author>Weese, Jürgen ; Kaus, Michael ; Lorenz, Christian ; Lobregt, Steven ; Truyen, Roel ; Pekar, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1398-117f3603c7d73078031baf67a3575fd28684d7c6f0ad36c3af1ed8c05d75aacd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological and medical sciences</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weese, Jürgen</creatorcontrib><creatorcontrib>Kaus, Michael</creatorcontrib><creatorcontrib>Lorenz, Christian</creatorcontrib><creatorcontrib>Lobregt, Steven</creatorcontrib><creatorcontrib>Truyen, Roel</creatorcontrib><creatorcontrib>Pekar, Vladimir</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weese, Jürgen</au><au>Kaus, Michael</au><au>Lorenz, Christian</au><au>Lobregt, Steven</au><au>Truyen, Roel</au><au>Pekar, Vladimir</au><au>Insana, Michael F.</au><au>Leahy, Richard M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shape Constrained Deformable Models for 3D Medical Image Segmentation</atitle><btitle>Information Processing in Medical Imaging</btitle><date>2001</date><risdate>2001</risdate><spage>380</spage><epage>387</epage><pages>380-387</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540422457</isbn><isbn>3540422455</isbn><eisbn>9783540457299</eisbn><eisbn>3540457291</eisbn><abstract>To improve the robustness of segmentation methods, more and more methods use prior knowledge. We present an approach which embeds an active shape model into an elastically deformable surface model, and combines the advantages of both approaches. The shape model constrains the flexibility of the surface mesh representing the deformable model and maintains an optimal distribution of mesh vertices. A specific external energy which attracts the deformable model to locally detected surfaces, reduces the danger that the mesh is trapped by false object boundaries. Examples are shown, and furthermore a validation study for the segmentation of vertebrae in CT images is presented. With the exception of a few problematic areas, the algorithm leads reliably to a very good overall segmentation.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-45729-1_38</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Information Processing in Medical Imaging, 2001, p.380-387
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14045836
source Springer Books
subjects Biological and medical sciences
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Miscellaneous. Technology
Radiodiagnosis. Nmr imagery. Nmr spectrometry
title Shape Constrained Deformable Models for 3D Medical Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A44%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shape%20Constrained%20Deformable%20Models%20for%203D%20Medical%20Image%20Segmentation&rft.btitle=Information%20Processing%20in%20Medical%20Imaging&rft.au=Weese,%20J%C3%BCrgen&rft.date=2001&rft.spage=380&rft.epage=387&rft.pages=380-387&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540422457&rft.isbn_list=3540422455&rft_id=info:doi/10.1007/3-540-45729-1_38&rft_dat=%3Cpascalfrancis_sprin%3E14045836%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540457299&rft.eisbn_list=3540457291&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true