Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data

Principal component analysis is a well developed and under- stood method of multivariate data processing. Its optimal performance requires knowledge of noise covariance that is not available in most ap- plications. We suggest a method for estimation of noise covariance based on assumed smoothness of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Šmídl, Václav, Kárný, Miroslav, Šámal, Martin, Backfrieder, Werner, Szabo, Zsolt
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue
container_start_page 225
container_title
container_volume
creator Šmídl, Václav
Kárný, Miroslav
Šámal, Martin
Backfrieder, Werner
Szabo, Zsolt
description Principal component analysis is a well developed and under- stood method of multivariate data processing. Its optimal performance requires knowledge of noise covariance that is not available in most ap- plications. We suggest a method for estimation of noise covariance based on assumed smoothness of the estimated dynamics.
doi_str_mv 10.1007/3-540-45729-1_24
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_14045826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14045826</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1394-ea15f2a55f6a627d888e21b29d611b2ad8e981d1b3a3aae81db7fa83ce6f9b0e3</originalsourceid><addsrcrecordid>eNpFkElPwzAQhc0mUUrvHH3h6OIli32sWpZKlUAsZ2uS2CWQ2JGdS_89DkXiNKP3nkbzPoRuGF0ySss7QfKMkiwvuSJM8-wELVQpRRJ_NXWKZqxgjAiRqbN_j_Nkn6MZFZQTVWbiEl3F-EUp5aXiM_T61ns_fjoTI34JrQ9466wPPYytd7h1k-jqdoAOr30_eGfciFcOukNsI_YWbw4O-rbG2x72Bm9ghGt0YaGLZvE35-jj4f59_UR2z4_b9WpHBiZURgyw3HLIc1tAwctGSmk4q7hqUo2KQyONkqxhlQABYNJalRakqE1hVUWNmKPb490BYg2dDZAejXoIbQ_hoNlERvIi5ZbHXEyW25ugK--_o2ZUT2S10AmU_qWoJ7LiByS6ZuQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data</title><source>Springer Books</source><creator>Šmídl, Václav ; Kárný, Miroslav ; Šámal, Martin ; Backfrieder, Werner ; Szabo, Zsolt</creator><contributor>Insana, Michael F. ; Leahy, Richard M.</contributor><creatorcontrib>Šmídl, Václav ; Kárný, Miroslav ; Šámal, Martin ; Backfrieder, Werner ; Szabo, Zsolt ; Insana, Michael F. ; Leahy, Richard M.</creatorcontrib><description>Principal component analysis is a well developed and under- stood method of multivariate data processing. Its optimal performance requires knowledge of noise covariance that is not available in most ap- plications. We suggest a method for estimation of noise covariance based on assumed smoothness of the estimated dynamics.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540422457</identifier><identifier>ISBN: 3540422455</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540457299</identifier><identifier>EISBN: 3540457291</identifier><identifier>DOI: 10.1007/3-540-45729-1_24</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and medical sciences ; Dynamic Positron Emission Tomography Study ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Nervous system ; Noiseless Data ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Scintillation Spectrum ; Serotonin Transporter ; Standard Principal Component Analysis</subject><ispartof>Information Processing in Medical Imaging, 2001, p.225-231</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45729-1_24$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45729-1_24$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14045826$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Insana, Michael F.</contributor><contributor>Leahy, Richard M.</contributor><creatorcontrib>Šmídl, Václav</creatorcontrib><creatorcontrib>Kárný, Miroslav</creatorcontrib><creatorcontrib>Šámal, Martin</creatorcontrib><creatorcontrib>Backfrieder, Werner</creatorcontrib><creatorcontrib>Szabo, Zsolt</creatorcontrib><title>Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data</title><title>Information Processing in Medical Imaging</title><description>Principal component analysis is a well developed and under- stood method of multivariate data processing. Its optimal performance requires knowledge of noise covariance that is not available in most ap- plications. We suggest a method for estimation of noise covariance based on assumed smoothness of the estimated dynamics.</description><subject>Biological and medical sciences</subject><subject>Dynamic Positron Emission Tomography Study</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Noiseless Data</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Scintillation Spectrum</subject><subject>Serotonin Transporter</subject><subject>Standard Principal Component Analysis</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540422457</isbn><isbn>3540422455</isbn><isbn>9783540457299</isbn><isbn>3540457291</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkElPwzAQhc0mUUrvHH3h6OIli32sWpZKlUAsZ2uS2CWQ2JGdS_89DkXiNKP3nkbzPoRuGF0ySss7QfKMkiwvuSJM8-wELVQpRRJ_NXWKZqxgjAiRqbN_j_Nkn6MZFZQTVWbiEl3F-EUp5aXiM_T61ns_fjoTI34JrQ9466wPPYytd7h1k-jqdoAOr30_eGfciFcOukNsI_YWbw4O-rbG2x72Bm9ghGt0YaGLZvE35-jj4f59_UR2z4_b9WpHBiZURgyw3HLIc1tAwctGSmk4q7hqUo2KQyONkqxhlQABYNJalRakqE1hVUWNmKPb490BYg2dDZAejXoIbQ_hoNlERvIi5ZbHXEyW25ugK--_o2ZUT2S10AmU_qWoJ7LiByS6ZuQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Šmídl, Václav</creator><creator>Kárný, Miroslav</creator><creator>Šámal, Martin</creator><creator>Backfrieder, Werner</creator><creator>Szabo, Zsolt</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data</title><author>Šmídl, Václav ; Kárný, Miroslav ; Šámal, Martin ; Backfrieder, Werner ; Szabo, Zsolt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1394-ea15f2a55f6a627d888e21b29d611b2ad8e981d1b3a3aae81db7fa83ce6f9b0e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological and medical sciences</topic><topic>Dynamic Positron Emission Tomography Study</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Noiseless Data</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Scintillation Spectrum</topic><topic>Serotonin Transporter</topic><topic>Standard Principal Component Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šmídl, Václav</creatorcontrib><creatorcontrib>Kárný, Miroslav</creatorcontrib><creatorcontrib>Šámal, Martin</creatorcontrib><creatorcontrib>Backfrieder, Werner</creatorcontrib><creatorcontrib>Szabo, Zsolt</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šmídl, Václav</au><au>Kárný, Miroslav</au><au>Šámal, Martin</au><au>Backfrieder, Werner</au><au>Szabo, Zsolt</au><au>Insana, Michael F.</au><au>Leahy, Richard M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data</atitle><btitle>Information Processing in Medical Imaging</btitle><date>2001</date><risdate>2001</risdate><spage>225</spage><epage>231</epage><pages>225-231</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540422457</isbn><isbn>3540422455</isbn><eisbn>9783540457299</eisbn><eisbn>3540457291</eisbn><abstract>Principal component analysis is a well developed and under- stood method of multivariate data processing. Its optimal performance requires knowledge of noise covariance that is not available in most ap- plications. We suggest a method for estimation of noise covariance based on assumed smoothness of the estimated dynamics.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-45729-1_24</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Information Processing in Medical Imaging, 2001, p.225-231
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14045826
source Springer Books
subjects Biological and medical sciences
Dynamic Positron Emission Tomography Study
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Nervous system
Noiseless Data
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Scintillation Spectrum
Serotonin Transporter
Standard Principal Component Analysis
title Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Smoothness%20Prior%20Information%20in%20Principal%20Component%20Analysis%20of%20Dynamic%20Image%20Data&rft.btitle=Information%20Processing%20in%20Medical%20Imaging&rft.au=%C5%A0m%C3%ADdl,%20V%C3%A1clav&rft.date=2001&rft.spage=225&rft.epage=231&rft.pages=225-231&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540422457&rft.isbn_list=3540422455&rft_id=info:doi/10.1007/3-540-45729-1_24&rft_dat=%3Cpascalfrancis_sprin%3E14045826%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540457299&rft.eisbn_list=3540457291&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true