Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data
Principal component analysis is a well developed and under- stood method of multivariate data processing. Its optimal performance requires knowledge of noise covariance that is not available in most ap- plications. We suggest a method for estimation of noise covariance based on assumed smoothness of...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 231 |
---|---|
container_issue | |
container_start_page | 225 |
container_title | |
container_volume | |
creator | Šmídl, Václav Kárný, Miroslav Šámal, Martin Backfrieder, Werner Szabo, Zsolt |
description | Principal component analysis is a well developed and under- stood method of multivariate data processing. Its optimal performance requires knowledge of noise covariance that is not available in most ap- plications. We suggest a method for estimation of noise covariance based on assumed smoothness of the estimated dynamics. |
doi_str_mv | 10.1007/3-540-45729-1_24 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_14045826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14045826</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1394-ea15f2a55f6a627d888e21b29d611b2ad8e981d1b3a3aae81db7fa83ce6f9b0e3</originalsourceid><addsrcrecordid>eNpFkElPwzAQhc0mUUrvHH3h6OIli32sWpZKlUAsZ2uS2CWQ2JGdS_89DkXiNKP3nkbzPoRuGF0ySss7QfKMkiwvuSJM8-wELVQpRRJ_NXWKZqxgjAiRqbN_j_Nkn6MZFZQTVWbiEl3F-EUp5aXiM_T61ns_fjoTI34JrQ9466wPPYytd7h1k-jqdoAOr30_eGfciFcOukNsI_YWbw4O-rbG2x72Bm9ghGt0YaGLZvE35-jj4f59_UR2z4_b9WpHBiZURgyw3HLIc1tAwctGSmk4q7hqUo2KQyONkqxhlQABYNJalRakqE1hVUWNmKPb490BYg2dDZAejXoIbQ_hoNlERvIi5ZbHXEyW25ugK--_o2ZUT2S10AmU_qWoJ7LiByS6ZuQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data</title><source>Springer Books</source><creator>Šmídl, Václav ; Kárný, Miroslav ; Šámal, Martin ; Backfrieder, Werner ; Szabo, Zsolt</creator><contributor>Insana, Michael F. ; Leahy, Richard M.</contributor><creatorcontrib>Šmídl, Václav ; Kárný, Miroslav ; Šámal, Martin ; Backfrieder, Werner ; Szabo, Zsolt ; Insana, Michael F. ; Leahy, Richard M.</creatorcontrib><description>Principal component analysis is a well developed and under- stood method of multivariate data processing. Its optimal performance requires knowledge of noise covariance that is not available in most ap- plications. We suggest a method for estimation of noise covariance based on assumed smoothness of the estimated dynamics.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540422457</identifier><identifier>ISBN: 3540422455</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540457299</identifier><identifier>EISBN: 3540457291</identifier><identifier>DOI: 10.1007/3-540-45729-1_24</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and medical sciences ; Dynamic Positron Emission Tomography Study ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Nervous system ; Noiseless Data ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Scintillation Spectrum ; Serotonin Transporter ; Standard Principal Component Analysis</subject><ispartof>Information Processing in Medical Imaging, 2001, p.225-231</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45729-1_24$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45729-1_24$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14045826$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Insana, Michael F.</contributor><contributor>Leahy, Richard M.</contributor><creatorcontrib>Šmídl, Václav</creatorcontrib><creatorcontrib>Kárný, Miroslav</creatorcontrib><creatorcontrib>Šámal, Martin</creatorcontrib><creatorcontrib>Backfrieder, Werner</creatorcontrib><creatorcontrib>Szabo, Zsolt</creatorcontrib><title>Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data</title><title>Information Processing in Medical Imaging</title><description>Principal component analysis is a well developed and under- stood method of multivariate data processing. Its optimal performance requires knowledge of noise covariance that is not available in most ap- plications. We suggest a method for estimation of noise covariance based on assumed smoothness of the estimated dynamics.</description><subject>Biological and medical sciences</subject><subject>Dynamic Positron Emission Tomography Study</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Noiseless Data</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Scintillation Spectrum</subject><subject>Serotonin Transporter</subject><subject>Standard Principal Component Analysis</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540422457</isbn><isbn>3540422455</isbn><isbn>9783540457299</isbn><isbn>3540457291</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkElPwzAQhc0mUUrvHH3h6OIli32sWpZKlUAsZ2uS2CWQ2JGdS_89DkXiNKP3nkbzPoRuGF0ySss7QfKMkiwvuSJM8-wELVQpRRJ_NXWKZqxgjAiRqbN_j_Nkn6MZFZQTVWbiEl3F-EUp5aXiM_T61ns_fjoTI34JrQ9466wPPYytd7h1k-jqdoAOr30_eGfciFcOukNsI_YWbw4O-rbG2x72Bm9ghGt0YaGLZvE35-jj4f59_UR2z4_b9WpHBiZURgyw3HLIc1tAwctGSmk4q7hqUo2KQyONkqxhlQABYNJalRakqE1hVUWNmKPb490BYg2dDZAejXoIbQ_hoNlERvIi5ZbHXEyW25ugK--_o2ZUT2S10AmU_qWoJ7LiByS6ZuQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Šmídl, Václav</creator><creator>Kárný, Miroslav</creator><creator>Šámal, Martin</creator><creator>Backfrieder, Werner</creator><creator>Szabo, Zsolt</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data</title><author>Šmídl, Václav ; Kárný, Miroslav ; Šámal, Martin ; Backfrieder, Werner ; Szabo, Zsolt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1394-ea15f2a55f6a627d888e21b29d611b2ad8e981d1b3a3aae81db7fa83ce6f9b0e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological and medical sciences</topic><topic>Dynamic Positron Emission Tomography Study</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Noiseless Data</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Scintillation Spectrum</topic><topic>Serotonin Transporter</topic><topic>Standard Principal Component Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šmídl, Václav</creatorcontrib><creatorcontrib>Kárný, Miroslav</creatorcontrib><creatorcontrib>Šámal, Martin</creatorcontrib><creatorcontrib>Backfrieder, Werner</creatorcontrib><creatorcontrib>Szabo, Zsolt</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šmídl, Václav</au><au>Kárný, Miroslav</au><au>Šámal, Martin</au><au>Backfrieder, Werner</au><au>Szabo, Zsolt</au><au>Insana, Michael F.</au><au>Leahy, Richard M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data</atitle><btitle>Information Processing in Medical Imaging</btitle><date>2001</date><risdate>2001</risdate><spage>225</spage><epage>231</epage><pages>225-231</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540422457</isbn><isbn>3540422455</isbn><eisbn>9783540457299</eisbn><eisbn>3540457291</eisbn><abstract>Principal component analysis is a well developed and under- stood method of multivariate data processing. Its optimal performance requires knowledge of noise covariance that is not available in most ap- plications. We suggest a method for estimation of noise covariance based on assumed smoothness of the estimated dynamics.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-45729-1_24</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Information Processing in Medical Imaging, 2001, p.225-231 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14045826 |
source | Springer Books |
subjects | Biological and medical sciences Dynamic Positron Emission Tomography Study Investigative techniques, diagnostic techniques (general aspects) Medical sciences Nervous system Noiseless Data Radiodiagnosis. Nmr imagery. Nmr spectrometry Scintillation Spectrum Serotonin Transporter Standard Principal Component Analysis |
title | Smoothness Prior Information in Principal Component Analysis of Dynamic Image Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Smoothness%20Prior%20Information%20in%20Principal%20Component%20Analysis%20of%20Dynamic%20Image%20Data&rft.btitle=Information%20Processing%20in%20Medical%20Imaging&rft.au=%C5%A0m%C3%ADdl,%20V%C3%A1clav&rft.date=2001&rft.spage=225&rft.epage=231&rft.pages=225-231&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540422457&rft.isbn_list=3540422455&rft_id=info:doi/10.1007/3-540-45729-1_24&rft_dat=%3Cpascalfrancis_sprin%3E14045826%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540457299&rft.eisbn_list=3540457291&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |