Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation

In this paper we discuss the use of neural networks as a tool for gray box modelling of the reactive distillation column. The basic idea is to replace certain correlations for the calculation of physical properties by neural networks. Different architectures as radial basis function networks and fee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dadhe, Kai, Roßmann, Volker, Durmus, Kazim, Engell, Sebastian
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue
container_start_page 576
container_title
container_volume 2206
creator Dadhe, Kai
Roßmann, Volker
Durmus, Kazim
Engell, Sebastian
description In this paper we discuss the use of neural networks as a tool for gray box modelling of the reactive distillation column. The basic idea is to replace certain correlations for the calculation of physical properties by neural networks. Different architectures as radial basis function networks and feedforward networks are compared and their approximation abilities are demonstrated.
doi_str_mv 10.1007/3-540-45493-4_58
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14044594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072481_63_592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-2e86cdf9a380b89dc93d77bd9c70d1a1536b0ff2c59510a2e3ca76723544f6023</originalsourceid><addsrcrecordid>eNotkElPwzAQhc0qQumdoy8cU2yPHcdHKFAqsUionC3XcUpoiIsdtn-Pu4xGGunNmyfNh9A5JSNKiLyEXHCSc8EV5FyLcg-dQlI2At9HGS0ozQG4OtgtmAQmDlFGgLBcSQ7HKGMUkpsVxQkaxvhOUgFjhNEMTZ_cVzAtfnL9jw_LiE1qPPO-xbUPeBLMH772v_jRV65tm26Bmw6_OGP75tvhmyb2TduavvHdGTqqTRvdcDcH6PXudja-zx-eJ9Px1UNugYo-Z64sbFUrAyWZl6qyCiop55WyklTUUAHFnNQ1s0IJSgxzYI0sJEvP8bogDAboYpu7MtGatg6ms03Uq9B8mPCnaWLAheLJN9r6Ylp1Cxf03Ptl1JToNVkNOuHSG5B6TTYdwC44-M8vF3vt1hfWdX0iZN_MqnchaiCS8ZLqIgUoBv-YvXT-</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072481_63_592</pqid></control><display><type>book_chapter</type><title>Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation</title><source>Springer Books</source><creator>Dadhe, Kai ; Roßmann, Volker ; Durmus, Kazim ; Engell, Sebastian</creator><contributor>Reusch, Bernd ; Reusch, Bernd</contributor><creatorcontrib>Dadhe, Kai ; Roßmann, Volker ; Durmus, Kazim ; Engell, Sebastian ; Reusch, Bernd ; Reusch, Bernd</creatorcontrib><description>In this paper we discuss the use of neural networks as a tool for gray box modelling of the reactive distillation column. The basic idea is to replace certain correlations for the calculation of physical properties by neural networks. Different architectures as radial basis function networks and feedforward networks are compared and their approximation abilities are demonstrated.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540427325</identifier><identifier>ISBN: 9783540427322</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540454934</identifier><identifier>EISBN: 9783540454939</identifier><identifier>DOI: 10.1007/3-540-45493-4_58</identifier><identifier>OCLC: 213934266</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Distillation Column ; Exact sciences and technology ; Hide Layer ; Model Predictive Control ; Radial Basis Function ; Root Mean Square Error</subject><ispartof>Computational Intelligence. Theory and Applications, 2001, Vol.2206, p.576-588</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-2e86cdf9a380b89dc93d77bd9c70d1a1536b0ff2c59510a2e3ca76723544f6023</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072481-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45493-4_58$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45493-4_58$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,27929,38259,41446,42515</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14044594$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Reusch, Bernd</contributor><contributor>Reusch, Bernd</contributor><creatorcontrib>Dadhe, Kai</creatorcontrib><creatorcontrib>Roßmann, Volker</creatorcontrib><creatorcontrib>Durmus, Kazim</creatorcontrib><creatorcontrib>Engell, Sebastian</creatorcontrib><title>Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation</title><title>Computational Intelligence. Theory and Applications</title><description>In this paper we discuss the use of neural networks as a tool for gray box modelling of the reactive distillation column. The basic idea is to replace certain correlations for the calculation of physical properties by neural networks. Different architectures as radial basis function networks and feedforward networks are compared and their approximation abilities are demonstrated.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Distillation Column</subject><subject>Exact sciences and technology</subject><subject>Hide Layer</subject><subject>Model Predictive Control</subject><subject>Radial Basis Function</subject><subject>Root Mean Square Error</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540427325</isbn><isbn>9783540427322</isbn><isbn>3540454934</isbn><isbn>9783540454939</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkElPwzAQhc0qQumdoy8cU2yPHcdHKFAqsUionC3XcUpoiIsdtn-Pu4xGGunNmyfNh9A5JSNKiLyEXHCSc8EV5FyLcg-dQlI2At9HGS0ozQG4OtgtmAQmDlFGgLBcSQ7HKGMUkpsVxQkaxvhOUgFjhNEMTZ_cVzAtfnL9jw_LiE1qPPO-xbUPeBLMH772v_jRV65tm26Bmw6_OGP75tvhmyb2TduavvHdGTqqTRvdcDcH6PXudja-zx-eJ9Px1UNugYo-Z64sbFUrAyWZl6qyCiop55WyklTUUAHFnNQ1s0IJSgxzYI0sJEvP8bogDAboYpu7MtGatg6ms03Uq9B8mPCnaWLAheLJN9r6Ylp1Cxf03Ptl1JToNVkNOuHSG5B6TTYdwC44-M8vF3vt1hfWdX0iZN_MqnchaiCS8ZLqIgUoBv-YvXT-</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Dadhe, Kai</creator><creator>Roßmann, Volker</creator><creator>Durmus, Kazim</creator><creator>Engell, Sebastian</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>20010101</creationdate><title>Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation</title><author>Dadhe, Kai ; Roßmann, Volker ; Durmus, Kazim ; Engell, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-2e86cdf9a380b89dc93d77bd9c70d1a1536b0ff2c59510a2e3ca76723544f6023</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Distillation Column</topic><topic>Exact sciences and technology</topic><topic>Hide Layer</topic><topic>Model Predictive Control</topic><topic>Radial Basis Function</topic><topic>Root Mean Square Error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dadhe, Kai</creatorcontrib><creatorcontrib>Roßmann, Volker</creatorcontrib><creatorcontrib>Durmus, Kazim</creatorcontrib><creatorcontrib>Engell, Sebastian</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadhe, Kai</au><au>Roßmann, Volker</au><au>Durmus, Kazim</au><au>Engell, Sebastian</au><au>Reusch, Bernd</au><au>Reusch, Bernd</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation</atitle><btitle>Computational Intelligence. Theory and Applications</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001-01-01</date><risdate>2001</risdate><volume>2206</volume><spage>576</spage><epage>588</epage><pages>576-588</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540427325</isbn><isbn>9783540427322</isbn><eisbn>3540454934</eisbn><eisbn>9783540454939</eisbn><abstract>In this paper we discuss the use of neural networks as a tool for gray box modelling of the reactive distillation column. The basic idea is to replace certain correlations for the calculation of physical properties by neural networks. Different architectures as radial basis function networks and feedforward networks are compared and their approximation abilities are demonstrated.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45493-4_58</doi><oclcid>213934266</oclcid><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Intelligence. Theory and Applications, 2001, Vol.2206, p.576-588
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_14044594
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Distillation Column
Exact sciences and technology
Hide Layer
Model Predictive Control
Radial Basis Function
Root Mean Square Error
title Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Neural%20Networks%20as%20a%20Tool%20for%20Gray%20Box%20Modelling%20in%20Reactive%20Distillation&rft.btitle=Computational%20Intelligence.%20Theory%20and%20Applications&rft.au=Dadhe,%20Kai&rft.date=2001-01-01&rft.volume=2206&rft.spage=576&rft.epage=588&rft.pages=576-588&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540427325&rft.isbn_list=9783540427322&rft_id=info:doi/10.1007/3-540-45493-4_58&rft_dat=%3Cproquest_pasca%3EEBC3072481_63_592%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540454934&rft.eisbn_list=9783540454939&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072481_63_592&rft_id=info:pmid/&rfr_iscdi=true