Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation
In this paper we discuss the use of neural networks as a tool for gray box modelling of the reactive distillation column. The basic idea is to replace certain correlations for the calculation of physical properties by neural networks. Different architectures as radial basis function networks and fee...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 588 |
---|---|
container_issue | |
container_start_page | 576 |
container_title | |
container_volume | 2206 |
creator | Dadhe, Kai Roßmann, Volker Durmus, Kazim Engell, Sebastian |
description | In this paper we discuss the use of neural networks as a tool for gray box modelling of the reactive distillation column. The basic idea is to replace certain correlations for the calculation of physical properties by neural networks. Different architectures as radial basis function networks and feedforward networks are compared and their approximation abilities are demonstrated. |
doi_str_mv | 10.1007/3-540-45493-4_58 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14044594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072481_63_592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-2e86cdf9a380b89dc93d77bd9c70d1a1536b0ff2c59510a2e3ca76723544f6023</originalsourceid><addsrcrecordid>eNotkElPwzAQhc0qQumdoy8cU2yPHcdHKFAqsUionC3XcUpoiIsdtn-Pu4xGGunNmyfNh9A5JSNKiLyEXHCSc8EV5FyLcg-dQlI2At9HGS0ozQG4OtgtmAQmDlFGgLBcSQ7HKGMUkpsVxQkaxvhOUgFjhNEMTZ_cVzAtfnL9jw_LiE1qPPO-xbUPeBLMH772v_jRV65tm26Bmw6_OGP75tvhmyb2TduavvHdGTqqTRvdcDcH6PXudja-zx-eJ9Px1UNugYo-Z64sbFUrAyWZl6qyCiop55WyklTUUAHFnNQ1s0IJSgxzYI0sJEvP8bogDAboYpu7MtGatg6ms03Uq9B8mPCnaWLAheLJN9r6Ylp1Cxf03Ptl1JToNVkNOuHSG5B6TTYdwC44-M8vF3vt1hfWdX0iZN_MqnchaiCS8ZLqIgUoBv-YvXT-</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072481_63_592</pqid></control><display><type>book_chapter</type><title>Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation</title><source>Springer Books</source><creator>Dadhe, Kai ; Roßmann, Volker ; Durmus, Kazim ; Engell, Sebastian</creator><contributor>Reusch, Bernd ; Reusch, Bernd</contributor><creatorcontrib>Dadhe, Kai ; Roßmann, Volker ; Durmus, Kazim ; Engell, Sebastian ; Reusch, Bernd ; Reusch, Bernd</creatorcontrib><description>In this paper we discuss the use of neural networks as a tool for gray box modelling of the reactive distillation column. The basic idea is to replace certain correlations for the calculation of physical properties by neural networks. Different architectures as radial basis function networks and feedforward networks are compared and their approximation abilities are demonstrated.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540427325</identifier><identifier>ISBN: 9783540427322</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540454934</identifier><identifier>EISBN: 9783540454939</identifier><identifier>DOI: 10.1007/3-540-45493-4_58</identifier><identifier>OCLC: 213934266</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Distillation Column ; Exact sciences and technology ; Hide Layer ; Model Predictive Control ; Radial Basis Function ; Root Mean Square Error</subject><ispartof>Computational Intelligence. Theory and Applications, 2001, Vol.2206, p.576-588</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-2e86cdf9a380b89dc93d77bd9c70d1a1536b0ff2c59510a2e3ca76723544f6023</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072481-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45493-4_58$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45493-4_58$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,780,781,785,790,791,794,27929,38259,41446,42515</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14044594$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Reusch, Bernd</contributor><contributor>Reusch, Bernd</contributor><creatorcontrib>Dadhe, Kai</creatorcontrib><creatorcontrib>Roßmann, Volker</creatorcontrib><creatorcontrib>Durmus, Kazim</creatorcontrib><creatorcontrib>Engell, Sebastian</creatorcontrib><title>Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation</title><title>Computational Intelligence. Theory and Applications</title><description>In this paper we discuss the use of neural networks as a tool for gray box modelling of the reactive distillation column. The basic idea is to replace certain correlations for the calculation of physical properties by neural networks. Different architectures as radial basis function networks and feedforward networks are compared and their approximation abilities are demonstrated.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Distillation Column</subject><subject>Exact sciences and technology</subject><subject>Hide Layer</subject><subject>Model Predictive Control</subject><subject>Radial Basis Function</subject><subject>Root Mean Square Error</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540427325</isbn><isbn>9783540427322</isbn><isbn>3540454934</isbn><isbn>9783540454939</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkElPwzAQhc0qQumdoy8cU2yPHcdHKFAqsUionC3XcUpoiIsdtn-Pu4xGGunNmyfNh9A5JSNKiLyEXHCSc8EV5FyLcg-dQlI2At9HGS0ozQG4OtgtmAQmDlFGgLBcSQ7HKGMUkpsVxQkaxvhOUgFjhNEMTZ_cVzAtfnL9jw_LiE1qPPO-xbUPeBLMH772v_jRV65tm26Bmw6_OGP75tvhmyb2TduavvHdGTqqTRvdcDcH6PXudja-zx-eJ9Px1UNugYo-Z64sbFUrAyWZl6qyCiop55WyklTUUAHFnNQ1s0IJSgxzYI0sJEvP8bogDAboYpu7MtGatg6ms03Uq9B8mPCnaWLAheLJN9r6Ylp1Cxf03Ptl1JToNVkNOuHSG5B6TTYdwC44-M8vF3vt1hfWdX0iZN_MqnchaiCS8ZLqIgUoBv-YvXT-</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Dadhe, Kai</creator><creator>Roßmann, Volker</creator><creator>Durmus, Kazim</creator><creator>Engell, Sebastian</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>20010101</creationdate><title>Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation</title><author>Dadhe, Kai ; Roßmann, Volker ; Durmus, Kazim ; Engell, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-2e86cdf9a380b89dc93d77bd9c70d1a1536b0ff2c59510a2e3ca76723544f6023</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Distillation Column</topic><topic>Exact sciences and technology</topic><topic>Hide Layer</topic><topic>Model Predictive Control</topic><topic>Radial Basis Function</topic><topic>Root Mean Square Error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dadhe, Kai</creatorcontrib><creatorcontrib>Roßmann, Volker</creatorcontrib><creatorcontrib>Durmus, Kazim</creatorcontrib><creatorcontrib>Engell, Sebastian</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadhe, Kai</au><au>Roßmann, Volker</au><au>Durmus, Kazim</au><au>Engell, Sebastian</au><au>Reusch, Bernd</au><au>Reusch, Bernd</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation</atitle><btitle>Computational Intelligence. Theory and Applications</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001-01-01</date><risdate>2001</risdate><volume>2206</volume><spage>576</spage><epage>588</epage><pages>576-588</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540427325</isbn><isbn>9783540427322</isbn><eisbn>3540454934</eisbn><eisbn>9783540454939</eisbn><abstract>In this paper we discuss the use of neural networks as a tool for gray box modelling of the reactive distillation column. The basic idea is to replace certain correlations for the calculation of physical properties by neural networks. Different architectures as radial basis function networks and feedforward networks are compared and their approximation abilities are demonstrated.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45493-4_58</doi><oclcid>213934266</oclcid><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computational Intelligence. Theory and Applications, 2001, Vol.2206, p.576-588 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14044594 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Distillation Column Exact sciences and technology Hide Layer Model Predictive Control Radial Basis Function Root Mean Square Error |
title | Neural Networks as a Tool for Gray Box Modelling in Reactive Distillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Neural%20Networks%20as%20a%20Tool%20for%20Gray%20Box%20Modelling%20in%20Reactive%20Distillation&rft.btitle=Computational%20Intelligence.%20Theory%20and%20Applications&rft.au=Dadhe,%20Kai&rft.date=2001-01-01&rft.volume=2206&rft.spage=576&rft.epage=588&rft.pages=576-588&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540427325&rft.isbn_list=9783540427322&rft_id=info:doi/10.1007/3-540-45493-4_58&rft_dat=%3Cproquest_pasca%3EEBC3072481_63_592%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540454934&rft.eisbn_list=9783540454939&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072481_63_592&rft_id=info:pmid/&rfr_iscdi=true |