Pyramidal Digest: An Efficient Model for Abstracting Text Databases
We present a novel model of automated composite text digest, the Pyramidal Digest. The model integrates traditional text summarization and text classification in that the digest not only serves as a “summary” but is also able to classify text segments of any given size, and answer queries relative t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | |
container_start_page | 360 |
container_title | |
container_volume | 2113 |
creator | Chuang, Wesley T. StottParker, D. |
description | We present a novel model of automated composite text digest, the Pyramidal Digest. The model integrates traditional text summarization and text classification in that the digest not only serves as a “summary” but is also able to classify text segments of any given size, and answer queries relative to a context.
“Pyramidal” refers to the fact that the digest is created in at least three dimensions: scope, granularity, and scale. The Pyramidal Digest is defined recursively as a structure of extracted and abstracted features that are obtained gradually – from specific to general, and from large to small text segment size – through a combination of shallow parsing and machine learning algorithms. There are three noticeable threads of learning taking place: learning of characteristic relations, rhetorical relations, and lexical relations.
Our model provides a principle for efficiently digesting large quantities of text: progressive learning can digest text by abstracting its significant features. This approach scales, with complexity bounded by O(n log n), where n is the size of the text. It offers a standard and systematic way of collecting as many semantic features as possible that are reachable by shallow parsing. It enables readers to query beyond keyword matches. |
doi_str_mv | 10.1007/3-540-44759-8_36 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_14044252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3073063_43_378</sourcerecordid><originalsourceid>FETCH-LOGICAL-p268t-b6ac156064ed9250c83cd44fb2122b8734eeda25985543f061c95b086f5445a13</originalsourceid><addsrcrecordid>eNotkL1PwzAQxc2nCKU7oxfGFNtnOw5b1ZYPqQiGMluO45RAmhQ7SPS_x2l7y0n37p7u_RC6pWRCCcnuIRWcpJxnIk-VBnmCriFO9gN1ihIqKU0BeH6Gxnmm9hoTLOPnKCFAWJpnHC5RkgslJCFMXaFxCF8kFjDGBU3Q7H3nzaYuTYPn9dqF_gFPW7yoqtrWru3xa1e6Bledx9Mi9N7Yvm7XeOX-ejw3vSlMcOEGXVSmCW587CP08bhYzZ7T5dvTy2y6TLdMqj4tpLE0_iG5K3MmiFVgS86rglHGCpUBd640LEYTgkNFJLW5KIiSleBcGAojdHfw3ZpgTVN509o66K2vN8bvNB3IxPhxb3LYC1Fq187rouu-g6ZED1g16AhK7ynqAWs8gKOx735-IwTthgsbAXjT2E-z7Z0PGkgGRILmoCHS_gc2MnLz</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3073063_43_378</pqid></control><display><type>book_chapter</type><title>Pyramidal Digest: An Efficient Model for Abstracting Text Databases</title><source>Springer Books</source><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chuang, Wesley T. ; StottParker, D.</creator><contributor>Quirchmayr, Gerald ; Lazansky, Jiri ; Mayr, Heinrich C ; Vogel, Pavel ; Vogel, Pavel ; Quirchmayr, Gerald ; Lazansky, Jiri ; Mayr, Heinrich C.</contributor><creatorcontrib>Chuang, Wesley T. ; StottParker, D. ; Quirchmayr, Gerald ; Lazansky, Jiri ; Mayr, Heinrich C ; Vogel, Pavel ; Vogel, Pavel ; Quirchmayr, Gerald ; Lazansky, Jiri ; Mayr, Heinrich C.</creatorcontrib><description>We present a novel model of automated composite text digest, the Pyramidal Digest. The model integrates traditional text summarization and text classification in that the digest not only serves as a “summary” but is also able to classify text segments of any given size, and answer queries relative to a context.
“Pyramidal” refers to the fact that the digest is created in at least three dimensions: scope, granularity, and scale. The Pyramidal Digest is defined recursively as a structure of extracted and abstracted features that are obtained gradually – from specific to general, and from large to small text segment size – through a combination of shallow parsing and machine learning algorithms. There are three noticeable threads of learning taking place: learning of characteristic relations, rhetorical relations, and lexical relations.
Our model provides a principle for efficiently digesting large quantities of text: progressive learning can digest text by abstracting its significant features. This approach scales, with complexity bounded by O(n log n), where n is the size of the text. It offers a standard and systematic way of collecting as many semantic features as possible that are reachable by shallow parsing. It enables readers to query beyond keyword matches.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540425274</identifier><identifier>ISBN: 3540425276</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540447598</identifier><identifier>EISBN: 9783540447597</identifier><identifier>DOI: 10.1007/3-540-44759-8_36</identifier><identifier>OCLC: 958560028</identifier><identifier>LCCallNum: TK7885-7895</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Classi Cation ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Semantic Relation ; Software ; Text Segment ; Word Sense ; Word Sense Disambiguation</subject><ispartof>Database and Expert Systems Applications, 2001, Vol.2113, p.360-369</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3073063-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-44759-8_36$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-44759-8_36$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14044252$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Quirchmayr, Gerald</contributor><contributor>Lazansky, Jiri</contributor><contributor>Mayr, Heinrich C</contributor><contributor>Vogel, Pavel</contributor><contributor>Vogel, Pavel</contributor><contributor>Quirchmayr, Gerald</contributor><contributor>Lazansky, Jiri</contributor><contributor>Mayr, Heinrich C.</contributor><creatorcontrib>Chuang, Wesley T.</creatorcontrib><creatorcontrib>StottParker, D.</creatorcontrib><title>Pyramidal Digest: An Efficient Model for Abstracting Text Databases</title><title>Database and Expert Systems Applications</title><description>We present a novel model of automated composite text digest, the Pyramidal Digest. The model integrates traditional text summarization and text classification in that the digest not only serves as a “summary” but is also able to classify text segments of any given size, and answer queries relative to a context.
“Pyramidal” refers to the fact that the digest is created in at least three dimensions: scope, granularity, and scale. The Pyramidal Digest is defined recursively as a structure of extracted and abstracted features that are obtained gradually – from specific to general, and from large to small text segment size – through a combination of shallow parsing and machine learning algorithms. There are three noticeable threads of learning taking place: learning of characteristic relations, rhetorical relations, and lexical relations.
Our model provides a principle for efficiently digesting large quantities of text: progressive learning can digest text by abstracting its significant features. This approach scales, with complexity bounded by O(n log n), where n is the size of the text. It offers a standard and systematic way of collecting as many semantic features as possible that are reachable by shallow parsing. It enables readers to query beyond keyword matches.</description><subject>Applied sciences</subject><subject>Classi Cation</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Semantic Relation</subject><subject>Software</subject><subject>Text Segment</subject><subject>Word Sense</subject><subject>Word Sense Disambiguation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540425274</isbn><isbn>3540425276</isbn><isbn>3540447598</isbn><isbn>9783540447597</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkL1PwzAQxc2nCKU7oxfGFNtnOw5b1ZYPqQiGMluO45RAmhQ7SPS_x2l7y0n37p7u_RC6pWRCCcnuIRWcpJxnIk-VBnmCriFO9gN1ihIqKU0BeH6Gxnmm9hoTLOPnKCFAWJpnHC5RkgslJCFMXaFxCF8kFjDGBU3Q7H3nzaYuTYPn9dqF_gFPW7yoqtrWru3xa1e6Bledx9Mi9N7Yvm7XeOX-ejw3vSlMcOEGXVSmCW587CP08bhYzZ7T5dvTy2y6TLdMqj4tpLE0_iG5K3MmiFVgS86rglHGCpUBd640LEYTgkNFJLW5KIiSleBcGAojdHfw3ZpgTVN509o66K2vN8bvNB3IxPhxb3LYC1Fq187rouu-g6ZED1g16AhK7ynqAWs8gKOx735-IwTthgsbAXjT2E-z7Z0PGkgGRILmoCHS_gc2MnLz</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Chuang, Wesley T.</creator><creator>StottParker, D.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Pyramidal Digest: An Efficient Model for Abstracting Text Databases</title><author>Chuang, Wesley T. ; StottParker, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p268t-b6ac156064ed9250c83cd44fb2122b8734eeda25985543f061c95b086f5445a13</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Classi Cation</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Semantic Relation</topic><topic>Software</topic><topic>Text Segment</topic><topic>Word Sense</topic><topic>Word Sense Disambiguation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuang, Wesley T.</creatorcontrib><creatorcontrib>StottParker, D.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuang, Wesley T.</au><au>StottParker, D.</au><au>Quirchmayr, Gerald</au><au>Lazansky, Jiri</au><au>Mayr, Heinrich C</au><au>Vogel, Pavel</au><au>Vogel, Pavel</au><au>Quirchmayr, Gerald</au><au>Lazansky, Jiri</au><au>Mayr, Heinrich C.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Pyramidal Digest: An Efficient Model for Abstracting Text Databases</atitle><btitle>Database and Expert Systems Applications</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2113</volume><spage>360</spage><epage>369</epage><pages>360-369</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540425274</isbn><isbn>3540425276</isbn><eisbn>3540447598</eisbn><eisbn>9783540447597</eisbn><abstract>We present a novel model of automated composite text digest, the Pyramidal Digest. The model integrates traditional text summarization and text classification in that the digest not only serves as a “summary” but is also able to classify text segments of any given size, and answer queries relative to a context.
“Pyramidal” refers to the fact that the digest is created in at least three dimensions: scope, granularity, and scale. The Pyramidal Digest is defined recursively as a structure of extracted and abstracted features that are obtained gradually – from specific to general, and from large to small text segment size – through a combination of shallow parsing and machine learning algorithms. There are three noticeable threads of learning taking place: learning of characteristic relations, rhetorical relations, and lexical relations.
Our model provides a principle for efficiently digesting large quantities of text: progressive learning can digest text by abstracting its significant features. This approach scales, with complexity bounded by O(n log n), where n is the size of the text. It offers a standard and systematic way of collecting as many semantic features as possible that are reachable by shallow parsing. It enables readers to query beyond keyword matches.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-44759-8_36</doi><oclcid>958560028</oclcid><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Database and Expert Systems Applications, 2001, Vol.2113, p.360-369 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_14044252 |
source | Springer Books; IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Classi Cation Computer science control theory systems Exact sciences and technology Information systems. Data bases Memory organisation. Data processing Semantic Relation Software Text Segment Word Sense Word Sense Disambiguation |
title | Pyramidal Digest: An Efficient Model for Abstracting Text Databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Pyramidal%20Digest:%20An%20Efficient%20Model%20for%20Abstracting%20Text%20Databases&rft.btitle=Database%20and%20Expert%20Systems%20Applications&rft.au=Chuang,%20Wesley%20T.&rft.date=2001&rft.volume=2113&rft.spage=360&rft.epage=369&rft.pages=360-369&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540425274&rft.isbn_list=3540425276&rft_id=info:doi/10.1007/3-540-44759-8_36&rft_dat=%3Cproquest_pasca%3EEBC3073063_43_378%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540447598&rft.eisbn_list=9783540447597&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3073063_43_378&rft_id=info:pmid/&rfr_iscdi=true |