Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays
The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2002-09, Vol.38 (5), p.2474-2476 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2476 |
---|---|
container_issue | 5 |
container_start_page | 2474 |
container_title | IEEE transactions on magnetics |
container_volume | 38 |
creator | Berkov, D.V. Gorn, N.L. |
description | The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fourier series. Here, we present the version of such an FFT-Ewald method suitable for grids of rectangular cells. Further, we have incorporated the evaluation of the near-field part of the Ewald sums into the FFT procedure used to evaluate the field of the Gaussian dipole lattice, so that no additional time is spent for the near-field computation. The method described can be used for simulation of any three- or two-dimensional systems with PBC. We present physical examples dealing with extended thin films and arrays of nanowires and nanodots. |
doi_str_mv | 10.1109/TMAG.2002.803618 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_13996402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1042225</ieee_id><sourcerecordid>28459452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6ef12e34fd712f42af202c59d9a1dae9348b80c7533742b390d330d2287bb79d3</originalsourceid><addsrcrecordid>eNpdkM-L1TAQx4Mo-Fy9C16CoLc-Jz_aJsdl0VVY9bKeQ14y0Sxt8kxacP3rTemC4mmY4TPfGT6EvGRwZAz0u9vPl9dHDsCPCsTA1CNyYFqyDmDQj8kBgKlOy0E-Jc9qvWut7BkciP-yzliisxOtcV4nu8ScaA604Gy_J1zi7310LtlhrVhpTBR_LZg8err8aF2I01ypTZ6eW1T20dFkU_Z5obYUe1-fkyfBThVfPNQL8u3D-9urj93N1-tPV5c3nRNSL92AgXEUMviR8SC5DRy467XXlnmLWkh1UuDGXohR8pPQ4IUAz7kaT6dRe3FB3u657dmfK9bFzLE6nCabMK_VcCV7LXvewNf_gXd5Lan9ZpTaxCjRNwh2yJVca8FgziXOttwbBmZzbjbnZnNududt5c1Drq1NaSg2uVj_7gmtBwnb_Vc7FxHxn1jJOe_FH5ofiuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884510835</pqid></control><display><type>article</type><title>Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays</title><source>IEEE Electronic Library (IEL)</source><creator>Berkov, D.V. ; Gorn, N.L.</creator><creatorcontrib>Berkov, D.V. ; Gorn, N.L.</creatorcontrib><description>The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fourier series. Here, we present the version of such an FFT-Ewald method suitable for grids of rectangular cells. Further, we have incorporated the evaluation of the near-field part of the Ewald sums into the FFT procedure used to evaluate the field of the Gaussian dipole lattice, so that no additional time is spent for the near-field computation. The method described can be used for simulation of any three- or two-dimensional systems with PBC. We present physical examples dealing with extended thin films and arrays of nanowires and nanodots.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2002.803618</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Boundary conditions ; Computational modeling ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Fast Fourier transforms ; Fourier series ; Fundamental areas of phenomenology (including applications) ; Grid computing ; Lattices ; Magnetism ; Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems ; Micromagnetics ; Numerical simulation ; Physics ; Poisson equations ; Transistors</subject><ispartof>IEEE transactions on magnetics, 2002-09, Vol.38 (5), p.2474-2476</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6ef12e34fd712f42af202c59d9a1dae9348b80c7533742b390d330d2287bb79d3</citedby><cites>FETCH-LOGICAL-c349t-6ef12e34fd712f42af202c59d9a1dae9348b80c7533742b390d330d2287bb79d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1042225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1042225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13996402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berkov, D.V.</creatorcontrib><creatorcontrib>Gorn, N.L.</creatorcontrib><title>Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fourier series. Here, we present the version of such an FFT-Ewald method suitable for grids of rectangular cells. Further, we have incorporated the evaluation of the near-field part of the Ewald sums into the FFT procedure used to evaluate the field of the Gaussian dipole lattice, so that no additional time is spent for the near-field computation. The method described can be used for simulation of any three- or two-dimensional systems with PBC. We present physical examples dealing with extended thin films and arrays of nanowires and nanodots.</description><subject>Applied classical electromagnetism</subject><subject>Boundary conditions</subject><subject>Computational modeling</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Fast Fourier transforms</subject><subject>Fourier series</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grid computing</subject><subject>Lattices</subject><subject>Magnetism</subject><subject>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</subject><subject>Micromagnetics</subject><subject>Numerical simulation</subject><subject>Physics</subject><subject>Poisson equations</subject><subject>Transistors</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM-L1TAQx4Mo-Fy9C16CoLc-Jz_aJsdl0VVY9bKeQ14y0Sxt8kxacP3rTemC4mmY4TPfGT6EvGRwZAz0u9vPl9dHDsCPCsTA1CNyYFqyDmDQj8kBgKlOy0E-Jc9qvWut7BkciP-yzliisxOtcV4nu8ScaA604Gy_J1zi7310LtlhrVhpTBR_LZg8err8aF2I01ypTZ6eW1T20dFkU_Z5obYUe1-fkyfBThVfPNQL8u3D-9urj93N1-tPV5c3nRNSL92AgXEUMviR8SC5DRy467XXlnmLWkh1UuDGXohR8pPQ4IUAz7kaT6dRe3FB3u657dmfK9bFzLE6nCabMK_VcCV7LXvewNf_gXd5Lan9ZpTaxCjRNwh2yJVca8FgziXOttwbBmZzbjbnZnNududt5c1Drq1NaSg2uVj_7gmtBwnb_Vc7FxHxn1jJOe_FH5ofiuM</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Berkov, D.V.</creator><creator>Gorn, N.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20020901</creationdate><title>Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays</title><author>Berkov, D.V. ; Gorn, N.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6ef12e34fd712f42af202c59d9a1dae9348b80c7533742b390d330d2287bb79d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied classical electromagnetism</topic><topic>Boundary conditions</topic><topic>Computational modeling</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Fast Fourier transforms</topic><topic>Fourier series</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grid computing</topic><topic>Lattices</topic><topic>Magnetism</topic><topic>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</topic><topic>Micromagnetics</topic><topic>Numerical simulation</topic><topic>Physics</topic><topic>Poisson equations</topic><topic>Transistors</topic><toplevel>online_resources</toplevel><creatorcontrib>Berkov, D.V.</creatorcontrib><creatorcontrib>Gorn, N.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Berkov, D.V.</au><au>Gorn, N.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2002-09-01</date><risdate>2002</risdate><volume>38</volume><issue>5</issue><spage>2474</spage><epage>2476</epage><pages>2474-2476</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fourier series. Here, we present the version of such an FFT-Ewald method suitable for grids of rectangular cells. Further, we have incorporated the evaluation of the near-field part of the Ewald sums into the FFT procedure used to evaluate the field of the Gaussian dipole lattice, so that no additional time is spent for the near-field computation. The method described can be used for simulation of any three- or two-dimensional systems with PBC. We present physical examples dealing with extended thin films and arrays of nanowires and nanodots.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2002.803618</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2002-09, Vol.38 (5), p.2474-2476 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_pascalfrancis_primary_13996402 |
source | IEEE Electronic Library (IEL) |
subjects | Applied classical electromagnetism Boundary conditions Computational modeling Electromagnetism electron and ion optics Exact sciences and technology Fast Fourier transforms Fourier series Fundamental areas of phenomenology (including applications) Grid computing Lattices Magnetism Magnetostatics magnetic shielding, magnetic induction, boundary-value problems Micromagnetics Numerical simulation Physics Poisson equations Transistors |
title | Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20remagnetization%20processes%20in%20extended%20thin%20films%20and%20periodic%20nanodot%20arrays&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Berkov,%20D.V.&rft.date=2002-09-01&rft.volume=38&rft.issue=5&rft.spage=2474&rft.epage=2476&rft.pages=2474-2476&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2002.803618&rft_dat=%3Cproquest_RIE%3E28459452%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884510835&rft_id=info:pmid/&rft_ieee_id=1042225&rfr_iscdi=true |