Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays

The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2002-09, Vol.38 (5), p.2474-2476
Hauptverfasser: Berkov, D.V., Gorn, N.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2476
container_issue 5
container_start_page 2474
container_title IEEE transactions on magnetics
container_volume 38
creator Berkov, D.V.
Gorn, N.L.
description The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fourier series. Here, we present the version of such an FFT-Ewald method suitable for grids of rectangular cells. Further, we have incorporated the evaluation of the near-field part of the Ewald sums into the FFT procedure used to evaluate the field of the Gaussian dipole lattice, so that no additional time is spent for the near-field computation. The method described can be used for simulation of any three- or two-dimensional systems with PBC. We present physical examples dealing with extended thin films and arrays of nanowires and nanodots.
doi_str_mv 10.1109/TMAG.2002.803618
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_13996402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1042225</ieee_id><sourcerecordid>28459452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6ef12e34fd712f42af202c59d9a1dae9348b80c7533742b390d330d2287bb79d3</originalsourceid><addsrcrecordid>eNpdkM-L1TAQx4Mo-Fy9C16CoLc-Jz_aJsdl0VVY9bKeQ14y0Sxt8kxacP3rTemC4mmY4TPfGT6EvGRwZAz0u9vPl9dHDsCPCsTA1CNyYFqyDmDQj8kBgKlOy0E-Jc9qvWut7BkciP-yzliisxOtcV4nu8ScaA604Gy_J1zi7310LtlhrVhpTBR_LZg8err8aF2I01ypTZ6eW1T20dFkU_Z5obYUe1-fkyfBThVfPNQL8u3D-9urj93N1-tPV5c3nRNSL92AgXEUMviR8SC5DRy467XXlnmLWkh1UuDGXohR8pPQ4IUAz7kaT6dRe3FB3u657dmfK9bFzLE6nCabMK_VcCV7LXvewNf_gXd5Lan9ZpTaxCjRNwh2yJVca8FgziXOttwbBmZzbjbnZnNududt5c1Drq1NaSg2uVj_7gmtBwnb_Vc7FxHxn1jJOe_FH5ofiuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884510835</pqid></control><display><type>article</type><title>Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays</title><source>IEEE Electronic Library (IEL)</source><creator>Berkov, D.V. ; Gorn, N.L.</creator><creatorcontrib>Berkov, D.V. ; Gorn, N.L.</creatorcontrib><description>The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fourier series. Here, we present the version of such an FFT-Ewald method suitable for grids of rectangular cells. Further, we have incorporated the evaluation of the near-field part of the Ewald sums into the FFT procedure used to evaluate the field of the Gaussian dipole lattice, so that no additional time is spent for the near-field computation. The method described can be used for simulation of any three- or two-dimensional systems with PBC. We present physical examples dealing with extended thin films and arrays of nanowires and nanodots.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2002.803618</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied classical electromagnetism ; Boundary conditions ; Computational modeling ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Fast Fourier transforms ; Fourier series ; Fundamental areas of phenomenology (including applications) ; Grid computing ; Lattices ; Magnetism ; Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems ; Micromagnetics ; Numerical simulation ; Physics ; Poisson equations ; Transistors</subject><ispartof>IEEE transactions on magnetics, 2002-09, Vol.38 (5), p.2474-2476</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6ef12e34fd712f42af202c59d9a1dae9348b80c7533742b390d330d2287bb79d3</citedby><cites>FETCH-LOGICAL-c349t-6ef12e34fd712f42af202c59d9a1dae9348b80c7533742b390d330d2287bb79d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1042225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1042225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13996402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Berkov, D.V.</creatorcontrib><creatorcontrib>Gorn, N.L.</creatorcontrib><title>Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fourier series. Here, we present the version of such an FFT-Ewald method suitable for grids of rectangular cells. Further, we have incorporated the evaluation of the near-field part of the Ewald sums into the FFT procedure used to evaluate the field of the Gaussian dipole lattice, so that no additional time is spent for the near-field computation. The method described can be used for simulation of any three- or two-dimensional systems with PBC. We present physical examples dealing with extended thin films and arrays of nanowires and nanodots.</description><subject>Applied classical electromagnetism</subject><subject>Boundary conditions</subject><subject>Computational modeling</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Fast Fourier transforms</subject><subject>Fourier series</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grid computing</subject><subject>Lattices</subject><subject>Magnetism</subject><subject>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</subject><subject>Micromagnetics</subject><subject>Numerical simulation</subject><subject>Physics</subject><subject>Poisson equations</subject><subject>Transistors</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM-L1TAQx4Mo-Fy9C16CoLc-Jz_aJsdl0VVY9bKeQ14y0Sxt8kxacP3rTemC4mmY4TPfGT6EvGRwZAz0u9vPl9dHDsCPCsTA1CNyYFqyDmDQj8kBgKlOy0E-Jc9qvWut7BkciP-yzliisxOtcV4nu8ScaA604Gy_J1zi7310LtlhrVhpTBR_LZg8err8aF2I01ypTZ6eW1T20dFkU_Z5obYUe1-fkyfBThVfPNQL8u3D-9urj93N1-tPV5c3nRNSL92AgXEUMviR8SC5DRy467XXlnmLWkh1UuDGXohR8pPQ4IUAz7kaT6dRe3FB3u657dmfK9bFzLE6nCabMK_VcCV7LXvewNf_gXd5Lan9ZpTaxCjRNwh2yJVca8FgziXOttwbBmZzbjbnZnNududt5c1Drq1NaSg2uVj_7gmtBwnb_Vc7FxHxn1jJOe_FH5ofiuM</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>Berkov, D.V.</creator><creator>Gorn, N.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20020901</creationdate><title>Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays</title><author>Berkov, D.V. ; Gorn, N.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6ef12e34fd712f42af202c59d9a1dae9348b80c7533742b390d330d2287bb79d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied classical electromagnetism</topic><topic>Boundary conditions</topic><topic>Computational modeling</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Fast Fourier transforms</topic><topic>Fourier series</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grid computing</topic><topic>Lattices</topic><topic>Magnetism</topic><topic>Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems</topic><topic>Micromagnetics</topic><topic>Numerical simulation</topic><topic>Physics</topic><topic>Poisson equations</topic><topic>Transistors</topic><toplevel>online_resources</toplevel><creatorcontrib>Berkov, D.V.</creatorcontrib><creatorcontrib>Gorn, N.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Berkov, D.V.</au><au>Gorn, N.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2002-09-01</date><risdate>2002</risdate><volume>38</volume><issue>5</issue><spage>2474</spage><epage>2476</epage><pages>2474-2476</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The best approach to compute the long-range stray field by micromagnetic simulations of systems with periodic boundary conditions (PBCs) on regular grids is the fast Fourier transform (FFT)-based solution of the Poisson equation combined with the Ewald method to ensure a rapid convergence of the Fourier series. Here, we present the version of such an FFT-Ewald method suitable for grids of rectangular cells. Further, we have incorporated the evaluation of the near-field part of the Ewald sums into the FFT procedure used to evaluate the field of the Gaussian dipole lattice, so that no additional time is spent for the near-field computation. The method described can be used for simulation of any three- or two-dimensional systems with PBC. We present physical examples dealing with extended thin films and arrays of nanowires and nanodots.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2002.803618</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2002-09, Vol.38 (5), p.2474-2476
issn 0018-9464
1941-0069
language eng
recordid cdi_pascalfrancis_primary_13996402
source IEEE Electronic Library (IEL)
subjects Applied classical electromagnetism
Boundary conditions
Computational modeling
Electromagnetism
electron and ion optics
Exact sciences and technology
Fast Fourier transforms
Fourier series
Fundamental areas of phenomenology (including applications)
Grid computing
Lattices
Magnetism
Magnetostatics
magnetic shielding, magnetic induction, boundary-value problems
Micromagnetics
Numerical simulation
Physics
Poisson equations
Transistors
title Numerical simulation of remagnetization processes in extended thin films and periodic nanodot arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20remagnetization%20processes%20in%20extended%20thin%20films%20and%20periodic%20nanodot%20arrays&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Berkov,%20D.V.&rft.date=2002-09-01&rft.volume=38&rft.issue=5&rft.spage=2474&rft.epage=2476&rft.pages=2474-2476&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2002.803618&rft_dat=%3Cproquest_RIE%3E28459452%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884510835&rft_id=info:pmid/&rft_ieee_id=1042225&rfr_iscdi=true