High Efficiency Electrochemical CO2-to-Methane Conversion Method Using Methanol with Lithium Supporting Electrolytes

The electrochemical reduction of CO2 at a Cu electrode was investigated in a methanol-based electrolyte using such lithium supporting salts as LiCl, LiBr, LiI, LiClO4, and CH3COOLi at low temperature (−30 °C). The main products from CO2 by the electrochemical reduction were methane, ethylene, carbon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2002-10, Vol.41 (21), p.5165-5170
Hauptverfasser: Kaneco, S, Iiba, K, Yabuuchi, M, Nishio, N, Ohnishi, H, Katsumata, H, Suzuki, T, Ohta, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5170
container_issue 21
container_start_page 5165
container_title Industrial & engineering chemistry research
container_volume 41
creator Kaneco, S
Iiba, K
Yabuuchi, M
Nishio, N
Ohnishi, H
Katsumata, H
Suzuki, T
Ohta, K
description The electrochemical reduction of CO2 at a Cu electrode was investigated in a methanol-based electrolyte using such lithium supporting salts as LiCl, LiBr, LiI, LiClO4, and CH3COOLi at low temperature (−30 °C). The main products from CO2 by the electrochemical reduction were methane, ethylene, carbon monoxide, and formic acid. A maximum faradic efficiency of methane was 71.8% in LiClO4/methanol-based electrolyte at −3.0 V versus Ag/AgCl saturated KCl. In the lithium salts/methanol-based electrolyte system, except for the case of acetate, the efficiency of hydrogen formation, being a competitive reaction against CO2 reduction, was depressed below 12%. On the basis of this work, the high efficiency electrochemical CO2-to-methane conversion method appears to be achieved. Future work to advance this technology may include the use of solar energy as the electric energy source. This research can contribute to large-scale manufacturing of useful organic products from readily available and cheap raw materials:  CO2-saturated methanol from industrial absorbers (the Rectisol process).
doi_str_mv 10.1021/ie0200454
format Article
fullrecord <record><control><sourceid>acs_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_13982983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b660438515</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-c69d28c483ecb0f7d49aceeea7783749242a947ddb99471634a27b194c55476c3</originalsourceid><addsrcrecordid>eNpFUc1OwzAYixBIjMGBN8iFYyFJkyY5QhkMaTC0n3OUpema0TVTkwF7ezptGpfP-mzLkmUAbjG6x4jgB2cRQYgyegZ6mBGUsO45Bz0khEiYEOwSXIWwQggxRmkPxKFbVnBQls4425gdHNTWxNabyq6d0TXMxySJPnm3sdKNhblvvm0bnG_gnvIFnAfXLOFB9zX8cbGCo-647RpOt5uNb-PecMytd9GGa3BR6jrYmyP2wfxlMMuHyWj8-pY_jhJNhIiJyWRBhKEitWaBSl5QqY21VnMuUk4loURLyotiITvAWUo14Qssqem68cykfXB3yN3o0HUpW90YF9SmdWvd7hROpSBSpJ0vOfhciPb3pOv2S2U85UzNPqdqgj-eZpPhsyL_udoEtfLbtulaKIzUfgJ1miD9AycJeLk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High Efficiency Electrochemical CO2-to-Methane Conversion Method Using Methanol with Lithium Supporting Electrolytes</title><source>American Chemical Society Journals</source><creator>Kaneco, S ; Iiba, K ; Yabuuchi, M ; Nishio, N ; Ohnishi, H ; Katsumata, H ; Suzuki, T ; Ohta, K</creator><creatorcontrib>Kaneco, S ; Iiba, K ; Yabuuchi, M ; Nishio, N ; Ohnishi, H ; Katsumata, H ; Suzuki, T ; Ohta, K</creatorcontrib><description>The electrochemical reduction of CO2 at a Cu electrode was investigated in a methanol-based electrolyte using such lithium supporting salts as LiCl, LiBr, LiI, LiClO4, and CH3COOLi at low temperature (−30 °C). The main products from CO2 by the electrochemical reduction were methane, ethylene, carbon monoxide, and formic acid. A maximum faradic efficiency of methane was 71.8% in LiClO4/methanol-based electrolyte at −3.0 V versus Ag/AgCl saturated KCl. In the lithium salts/methanol-based electrolyte system, except for the case of acetate, the efficiency of hydrogen formation, being a competitive reaction against CO2 reduction, was depressed below 12%. On the basis of this work, the high efficiency electrochemical CO2-to-methane conversion method appears to be achieved. Future work to advance this technology may include the use of solar energy as the electric energy source. This research can contribute to large-scale manufacturing of useful organic products from readily available and cheap raw materials:  CO2-saturated methanol from industrial absorbers (the Rectisol process).</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie0200454</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Electrochemistry ; Exact sciences and technology ; General and physical chemistry ; Kinetics and mechanism of reactions</subject><ispartof>Industrial &amp; engineering chemistry research, 2002-10, Vol.41 (21), p.5165-5170</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie0200454$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie0200454$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13982983$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaneco, S</creatorcontrib><creatorcontrib>Iiba, K</creatorcontrib><creatorcontrib>Yabuuchi, M</creatorcontrib><creatorcontrib>Nishio, N</creatorcontrib><creatorcontrib>Ohnishi, H</creatorcontrib><creatorcontrib>Katsumata, H</creatorcontrib><creatorcontrib>Suzuki, T</creatorcontrib><creatorcontrib>Ohta, K</creatorcontrib><title>High Efficiency Electrochemical CO2-to-Methane Conversion Method Using Methanol with Lithium Supporting Electrolytes</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The electrochemical reduction of CO2 at a Cu electrode was investigated in a methanol-based electrolyte using such lithium supporting salts as LiCl, LiBr, LiI, LiClO4, and CH3COOLi at low temperature (−30 °C). The main products from CO2 by the electrochemical reduction were methane, ethylene, carbon monoxide, and formic acid. A maximum faradic efficiency of methane was 71.8% in LiClO4/methanol-based electrolyte at −3.0 V versus Ag/AgCl saturated KCl. In the lithium salts/methanol-based electrolyte system, except for the case of acetate, the efficiency of hydrogen formation, being a competitive reaction against CO2 reduction, was depressed below 12%. On the basis of this work, the high efficiency electrochemical CO2-to-methane conversion method appears to be achieved. Future work to advance this technology may include the use of solar energy as the electric energy source. This research can contribute to large-scale manufacturing of useful organic products from readily available and cheap raw materials:  CO2-saturated methanol from industrial absorbers (the Rectisol process).</description><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics and mechanism of reactions</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpFUc1OwzAYixBIjMGBN8iFYyFJkyY5QhkMaTC0n3OUpema0TVTkwF7ezptGpfP-mzLkmUAbjG6x4jgB2cRQYgyegZ6mBGUsO45Bz0khEiYEOwSXIWwQggxRmkPxKFbVnBQls4425gdHNTWxNabyq6d0TXMxySJPnm3sdKNhblvvm0bnG_gnvIFnAfXLOFB9zX8cbGCo-647RpOt5uNb-PecMytd9GGa3BR6jrYmyP2wfxlMMuHyWj8-pY_jhJNhIiJyWRBhKEitWaBSl5QqY21VnMuUk4loURLyotiITvAWUo14Qssqem68cykfXB3yN3o0HUpW90YF9SmdWvd7hROpSBSpJ0vOfhciPb3pOv2S2U85UzNPqdqgj-eZpPhsyL_udoEtfLbtulaKIzUfgJ1miD9AycJeLk</recordid><startdate>20021016</startdate><enddate>20021016</enddate><creator>Kaneco, S</creator><creator>Iiba, K</creator><creator>Yabuuchi, M</creator><creator>Nishio, N</creator><creator>Ohnishi, H</creator><creator>Katsumata, H</creator><creator>Suzuki, T</creator><creator>Ohta, K</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope></search><sort><creationdate>20021016</creationdate><title>High Efficiency Electrochemical CO2-to-Methane Conversion Method Using Methanol with Lithium Supporting Electrolytes</title><author>Kaneco, S ; Iiba, K ; Yabuuchi, M ; Nishio, N ; Ohnishi, H ; Katsumata, H ; Suzuki, T ; Ohta, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-c69d28c483ecb0f7d49aceeea7783749242a947ddb99471634a27b194c55476c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics and mechanism of reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaneco, S</creatorcontrib><creatorcontrib>Iiba, K</creatorcontrib><creatorcontrib>Yabuuchi, M</creatorcontrib><creatorcontrib>Nishio, N</creatorcontrib><creatorcontrib>Ohnishi, H</creatorcontrib><creatorcontrib>Katsumata, H</creatorcontrib><creatorcontrib>Suzuki, T</creatorcontrib><creatorcontrib>Ohta, K</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaneco, S</au><au>Iiba, K</au><au>Yabuuchi, M</au><au>Nishio, N</au><au>Ohnishi, H</au><au>Katsumata, H</au><au>Suzuki, T</au><au>Ohta, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Efficiency Electrochemical CO2-to-Methane Conversion Method Using Methanol with Lithium Supporting Electrolytes</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2002-10-16</date><risdate>2002</risdate><volume>41</volume><issue>21</issue><spage>5165</spage><epage>5170</epage><pages>5165-5170</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>The electrochemical reduction of CO2 at a Cu electrode was investigated in a methanol-based electrolyte using such lithium supporting salts as LiCl, LiBr, LiI, LiClO4, and CH3COOLi at low temperature (−30 °C). The main products from CO2 by the electrochemical reduction were methane, ethylene, carbon monoxide, and formic acid. A maximum faradic efficiency of methane was 71.8% in LiClO4/methanol-based electrolyte at −3.0 V versus Ag/AgCl saturated KCl. In the lithium salts/methanol-based electrolyte system, except for the case of acetate, the efficiency of hydrogen formation, being a competitive reaction against CO2 reduction, was depressed below 12%. On the basis of this work, the high efficiency electrochemical CO2-to-methane conversion method appears to be achieved. Future work to advance this technology may include the use of solar energy as the electric energy source. This research can contribute to large-scale manufacturing of useful organic products from readily available and cheap raw materials:  CO2-saturated methanol from industrial absorbers (the Rectisol process).</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie0200454</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2002-10, Vol.41 (21), p.5165-5170
issn 0888-5885
1520-5045
language eng
recordid cdi_pascalfrancis_primary_13982983
source American Chemical Society Journals
subjects Chemistry
Electrochemistry
Exact sciences and technology
General and physical chemistry
Kinetics and mechanism of reactions
title High Efficiency Electrochemical CO2-to-Methane Conversion Method Using Methanol with Lithium Supporting Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Efficiency%20Electrochemical%20CO2-to-Methane%20Conversion%20Method%20Using%20Methanol%20with%20Lithium%20Supporting%20Electrolytes&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kaneco,%20S&rft.date=2002-10-16&rft.volume=41&rft.issue=21&rft.spage=5165&rft.epage=5170&rft.pages=5165-5170&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie0200454&rft_dat=%3Cacs_pasca%3Eb660438515%3C/acs_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true