Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9

Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9 Hiroshi Kuriyama , Iichiro Shimomura , Ken Kishida , Hidehiko Kondo , Naoki Furuyama , Hitoshi Nishizawa , Norikazu Maeda , Morihiro Matsuda , Hiroyuki Nagaretani , Shinji Kihara , Tadashi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2002-10, Vol.51 (10), p.2915-2921
Hauptverfasser: KURIYAMA, Hiroshi, SHIMOMURA, Iichiro, NAKAMURA, Tadashi, TOCHINO, Yoshihiro, FUNAHASHI, Tohru, MATSUZAWA, Yuji, KISHIDA, Ken, KONDO, Hidehiko, FURUYAMA, Naoki, NISHIZAWA, Hitoshi, MAEDA, Norikazu, MATSUDA, Morihiro, NAGARETANI, Hiroyuki, KIHARA, Shinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2921
container_issue 10
container_start_page 2915
container_title Diabetes (New York, N.Y.)
container_volume 51
creator KURIYAMA, Hiroshi
SHIMOMURA, Iichiro
NAKAMURA, Tadashi
TOCHINO, Yoshihiro
FUNAHASHI, Tohru
MATSUZAWA, Yuji
KISHIDA, Ken
KONDO, Hidehiko
FURUYAMA, Naoki
NISHIZAWA, Hitoshi
MAEDA, Norikazu
MATSUDA, Morihiro
NAGARETANI, Hiroyuki
KIHARA, Shinji
description Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9 Hiroshi Kuriyama , Iichiro Shimomura , Ken Kishida , Hidehiko Kondo , Naoki Furuyama , Hitoshi Nishizawa , Norikazu Maeda , Morihiro Matsuda , Hiroyuki Nagaretani , Shinji Kihara , Tadashi Nakamura , Yoshihiro Tochino , Tohru Funahashi and Yuji Matsuzawa From the Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan Abstract Plasma glycerol is a major substrate for hepatic gluconeogenesis. Aquaporin adipose (AQPap/7), an adipose-specific glycerol channel, provides fat-derived glycerol into plasma. In the present study, we cloned the coding and promoter regions of mouse aquaporin 9 (AQP9), a liver-specific glycerol channel. Fasting and refeeding of mice increased and decreased hepatic AQP9 mRNA levels, respectively. Insulin deficiency induced by streptozotocin resulted in increased hepatic AQP9 mRNA. These changes in hepatic AQP9 mRNA were accompanied by those of hepatic gluconeogenic mRNAs and plasma glycerol levels. In cultured hepatocytes, insulin downregulated AQP9 mRNA. The AQP9 promoter contained the negative insulin response element TGTTTTC at −496/−502, similar to the promoter of the AQPap/7 gene. In contrast, in insulin-resistant db +/ db + mice, AQPap/7 mRNA in fat and AQP9 mRNA in liver were increased, despite hyperinsulinemia, with high plasma glycerol and glucose levels. Glycerol infusion in the db +/ db + mice augmented hepatic glucose output. Our results indicate that coordinated regulations of fat-specific AQPap/7 and liver-specific AQP9 should be crucial to determine glucose metabolism in physiology and insulin resistance. Footnotes Address correspondence and reprint requests to Iichiro Shimomura Department of Organismal Biosystems, Graduate School of Frontier Bioscience, Department of Medicine and Pathophysiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: ichi{at}imed2.med.osaka-u.ac.jp . Received for publication 15 March 2002 and accepted in revised form 26 June 2002. AQP, aquaporin; AQPap/7, aquaporin adipose; DMEM, Dulbecco’s modified Eagle’s medium; FFA, free fatty acid; GlyK, glycerokinase; HSL, hormone-sensitive lipase; IRE, insulin response element; IRS, insulin receptor substrate; PEPCK, phosphoenolpyruvate carboxykinase; RACE, rapid amplification of cDNA ends; STZ, streptozotocin. DIABETES
doi_str_mv 10.2337/diabetes.51.10.2915
format Article
fullrecord <record><control><sourceid>gale_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_13956859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A92520031</galeid><sourcerecordid>A92520031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624t-17d90363b837949cb8256751e2c9972817db5d3569638e3fd7bba5bbeeddfd213</originalsourceid><addsrcrecordid>eNptkk-L2zAQxU1p6abbfoJC8aVlD3FqSZFlHYPppoXAQv9Ab0KWxo6KImUle9v99qtsUkwgzEHw5vc0w_Cy7D0qF5gQ9lkb2cIAcUHR4qBxRF9kM8QJLwhmv19ms7JEuECMs6vsTYx_yrKsUr3OrhAmFC0xm2Wu8T5o4-QAOv8O_WjlYLzLfZffyqH4sQdlOqNy6XS-MQ8QJmltHxUEb_NmK50DG-f56n6Uex-My1fa7H2EZ9-k8rfZq07aCO9O73X26_bLz-Zrsblbf2tWm0JVeDmknTUvSUXamjC-5KqtMa0YRYAV5wzXqd9STWjFK1ID6TRrW0nbFkDrTmNErrNPx3_3wd-PEAexM1GBtdKBH6NgGOG6ogdwfgR7aUEY1_khSNWDgyCtd9CZJK84prgsyQEvLuCpNOyMusTfnPEJGeDf0MsxRlGvN2fo_BKqvLXQg0jnae7OcHLEVfAxBujEPpidDI8CleKQD_E_H4KiZy3lI7k-nO4ytjvQk-cUiAR8PAEyKmm7IJ0yceIIp1VN-bTt1vTbvybANO7S3Cd_nNJt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72128651</pqid></control><display><type>article</type><title>Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9</title><source>MEDLINE</source><source>EZB Electronic Journals Library</source><creator>KURIYAMA, Hiroshi ; SHIMOMURA, Iichiro ; NAKAMURA, Tadashi ; TOCHINO, Yoshihiro ; FUNAHASHI, Tohru ; MATSUZAWA, Yuji ; KISHIDA, Ken ; KONDO, Hidehiko ; FURUYAMA, Naoki ; NISHIZAWA, Hitoshi ; MAEDA, Norikazu ; MATSUDA, Morihiro ; NAGARETANI, Hiroyuki ; KIHARA, Shinji</creator><creatorcontrib>KURIYAMA, Hiroshi ; SHIMOMURA, Iichiro ; NAKAMURA, Tadashi ; TOCHINO, Yoshihiro ; FUNAHASHI, Tohru ; MATSUZAWA, Yuji ; KISHIDA, Ken ; KONDO, Hidehiko ; FURUYAMA, Naoki ; NISHIZAWA, Hitoshi ; MAEDA, Norikazu ; MATSUDA, Morihiro ; NAGARETANI, Hiroyuki ; KIHARA, Shinji</creatorcontrib><description>Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9 Hiroshi Kuriyama , Iichiro Shimomura , Ken Kishida , Hidehiko Kondo , Naoki Furuyama , Hitoshi Nishizawa , Norikazu Maeda , Morihiro Matsuda , Hiroyuki Nagaretani , Shinji Kihara , Tadashi Nakamura , Yoshihiro Tochino , Tohru Funahashi and Yuji Matsuzawa From the Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan Abstract Plasma glycerol is a major substrate for hepatic gluconeogenesis. Aquaporin adipose (AQPap/7), an adipose-specific glycerol channel, provides fat-derived glycerol into plasma. In the present study, we cloned the coding and promoter regions of mouse aquaporin 9 (AQP9), a liver-specific glycerol channel. Fasting and refeeding of mice increased and decreased hepatic AQP9 mRNA levels, respectively. Insulin deficiency induced by streptozotocin resulted in increased hepatic AQP9 mRNA. These changes in hepatic AQP9 mRNA were accompanied by those of hepatic gluconeogenic mRNAs and plasma glycerol levels. In cultured hepatocytes, insulin downregulated AQP9 mRNA. The AQP9 promoter contained the negative insulin response element TGTTTTC at −496/−502, similar to the promoter of the AQPap/7 gene. In contrast, in insulin-resistant db +/ db + mice, AQPap/7 mRNA in fat and AQP9 mRNA in liver were increased, despite hyperinsulinemia, with high plasma glycerol and glucose levels. Glycerol infusion in the db +/ db + mice augmented hepatic glucose output. Our results indicate that coordinated regulations of fat-specific AQPap/7 and liver-specific AQP9 should be crucial to determine glucose metabolism in physiology and insulin resistance. Footnotes Address correspondence and reprint requests to Iichiro Shimomura Department of Organismal Biosystems, Graduate School of Frontier Bioscience, Department of Medicine and Pathophysiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: ichi{at}imed2.med.osaka-u.ac.jp . Received for publication 15 March 2002 and accepted in revised form 26 June 2002. AQP, aquaporin; AQPap/7, aquaporin adipose; DMEM, Dulbecco’s modified Eagle’s medium; FFA, free fatty acid; GlyK, glycerokinase; HSL, hormone-sensitive lipase; IRE, insulin response element; IRS, insulin receptor substrate; PEPCK, phosphoenolpyruvate carboxykinase; RACE, rapid amplification of cDNA ends; STZ, streptozotocin. DIABETES</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/diabetes.51.10.2915</identifier><identifier>PMID: 12351427</identifier><identifier>CODEN: DIAEAZ</identifier><language>eng</language><publisher>Alexandria, VA: American Diabetes Association</publisher><subject>Amino Acid Sequence ; Animals ; Aquaporins - genetics ; Aquaporins - metabolism ; Base Sequence ; Biological and medical sciences ; Carbohydrates ; Carcinoma, Hepatocellular ; Cloning, Molecular ; Comorbidity ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Experimental - physiopathology ; Diabetes research ; Eating - physiology ; Fasting - physiology ; Fats - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation - physiology ; Glycerin ; Glycerol ; Glycerol - metabolism ; Glycerol Kinase - genetics ; Insulin Resistance ; Liver - metabolism ; Liver Neoplasms ; Male ; Metabolisms and neurohumoral controls ; Mice ; Mice, Inbred C57BL ; Mice, Inbred ICR ; Molecular Sequence Data ; Obesity ; Phosphoenolpyruvate Carboxykinase (GTP) - genetics ; Physiological aspects ; Rats ; RNA, Messenger - analysis ; Tumor Cells, Cultured ; Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><ispartof>Diabetes (New York, N.Y.), 2002-10, Vol.51 (10), p.2915-2921</ispartof><rights>2003 INIST-CNRS</rights><rights>COPYRIGHT 2002 American Diabetes Association</rights><rights>COPYRIGHT 2002 American Diabetes Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c624t-17d90363b837949cb8256751e2c9972817db5d3569638e3fd7bba5bbeeddfd213</citedby><cites>FETCH-LOGICAL-c624t-17d90363b837949cb8256751e2c9972817db5d3569638e3fd7bba5bbeeddfd213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13956859$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12351427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KURIYAMA, Hiroshi</creatorcontrib><creatorcontrib>SHIMOMURA, Iichiro</creatorcontrib><creatorcontrib>NAKAMURA, Tadashi</creatorcontrib><creatorcontrib>TOCHINO, Yoshihiro</creatorcontrib><creatorcontrib>FUNAHASHI, Tohru</creatorcontrib><creatorcontrib>MATSUZAWA, Yuji</creatorcontrib><creatorcontrib>KISHIDA, Ken</creatorcontrib><creatorcontrib>KONDO, Hidehiko</creatorcontrib><creatorcontrib>FURUYAMA, Naoki</creatorcontrib><creatorcontrib>NISHIZAWA, Hitoshi</creatorcontrib><creatorcontrib>MAEDA, Norikazu</creatorcontrib><creatorcontrib>MATSUDA, Morihiro</creatorcontrib><creatorcontrib>NAGARETANI, Hiroyuki</creatorcontrib><creatorcontrib>KIHARA, Shinji</creatorcontrib><title>Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9 Hiroshi Kuriyama , Iichiro Shimomura , Ken Kishida , Hidehiko Kondo , Naoki Furuyama , Hitoshi Nishizawa , Norikazu Maeda , Morihiro Matsuda , Hiroyuki Nagaretani , Shinji Kihara , Tadashi Nakamura , Yoshihiro Tochino , Tohru Funahashi and Yuji Matsuzawa From the Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan Abstract Plasma glycerol is a major substrate for hepatic gluconeogenesis. Aquaporin adipose (AQPap/7), an adipose-specific glycerol channel, provides fat-derived glycerol into plasma. In the present study, we cloned the coding and promoter regions of mouse aquaporin 9 (AQP9), a liver-specific glycerol channel. Fasting and refeeding of mice increased and decreased hepatic AQP9 mRNA levels, respectively. Insulin deficiency induced by streptozotocin resulted in increased hepatic AQP9 mRNA. These changes in hepatic AQP9 mRNA were accompanied by those of hepatic gluconeogenic mRNAs and plasma glycerol levels. In cultured hepatocytes, insulin downregulated AQP9 mRNA. The AQP9 promoter contained the negative insulin response element TGTTTTC at −496/−502, similar to the promoter of the AQPap/7 gene. In contrast, in insulin-resistant db +/ db + mice, AQPap/7 mRNA in fat and AQP9 mRNA in liver were increased, despite hyperinsulinemia, with high plasma glycerol and glucose levels. Glycerol infusion in the db +/ db + mice augmented hepatic glucose output. Our results indicate that coordinated regulations of fat-specific AQPap/7 and liver-specific AQP9 should be crucial to determine glucose metabolism in physiology and insulin resistance. Footnotes Address correspondence and reprint requests to Iichiro Shimomura Department of Organismal Biosystems, Graduate School of Frontier Bioscience, Department of Medicine and Pathophysiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: ichi{at}imed2.med.osaka-u.ac.jp . Received for publication 15 March 2002 and accepted in revised form 26 June 2002. AQP, aquaporin; AQPap/7, aquaporin adipose; DMEM, Dulbecco’s modified Eagle’s medium; FFA, free fatty acid; GlyK, glycerokinase; HSL, hormone-sensitive lipase; IRE, insulin response element; IRS, insulin receptor substrate; PEPCK, phosphoenolpyruvate carboxykinase; RACE, rapid amplification of cDNA ends; STZ, streptozotocin. DIABETES</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Aquaporins - genetics</subject><subject>Aquaporins - metabolism</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Carbohydrates</subject><subject>Carcinoma, Hepatocellular</subject><subject>Cloning, Molecular</subject><subject>Comorbidity</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Experimental - physiopathology</subject><subject>Diabetes research</subject><subject>Eating - physiology</subject><subject>Fasting - physiology</subject><subject>Fats - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation - physiology</subject><subject>Glycerin</subject><subject>Glycerol</subject><subject>Glycerol - metabolism</subject><subject>Glycerol Kinase - genetics</subject><subject>Insulin Resistance</subject><subject>Liver - metabolism</subject><subject>Liver Neoplasms</subject><subject>Male</subject><subject>Metabolisms and neurohumoral controls</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred ICR</subject><subject>Molecular Sequence Data</subject><subject>Obesity</subject><subject>Phosphoenolpyruvate Carboxykinase (GTP) - genetics</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>RNA, Messenger - analysis</subject><subject>Tumor Cells, Cultured</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkk-L2zAQxU1p6abbfoJC8aVlD3FqSZFlHYPppoXAQv9Ab0KWxo6KImUle9v99qtsUkwgzEHw5vc0w_Cy7D0qF5gQ9lkb2cIAcUHR4qBxRF9kM8QJLwhmv19ms7JEuECMs6vsTYx_yrKsUr3OrhAmFC0xm2Wu8T5o4-QAOv8O_WjlYLzLfZffyqH4sQdlOqNy6XS-MQ8QJmltHxUEb_NmK50DG-f56n6Uex-My1fa7H2EZ9-k8rfZq07aCO9O73X26_bLz-Zrsblbf2tWm0JVeDmknTUvSUXamjC-5KqtMa0YRYAV5wzXqd9STWjFK1ID6TRrW0nbFkDrTmNErrNPx3_3wd-PEAexM1GBtdKBH6NgGOG6ogdwfgR7aUEY1_khSNWDgyCtd9CZJK84prgsyQEvLuCpNOyMusTfnPEJGeDf0MsxRlGvN2fo_BKqvLXQg0jnae7OcHLEVfAxBujEPpidDI8CleKQD_E_H4KiZy3lI7k-nO4ytjvQk-cUiAR8PAEyKmm7IJ0yceIIp1VN-bTt1vTbvybANO7S3Cd_nNJt</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>KURIYAMA, Hiroshi</creator><creator>SHIMOMURA, Iichiro</creator><creator>NAKAMURA, Tadashi</creator><creator>TOCHINO, Yoshihiro</creator><creator>FUNAHASHI, Tohru</creator><creator>MATSUZAWA, Yuji</creator><creator>KISHIDA, Ken</creator><creator>KONDO, Hidehiko</creator><creator>FURUYAMA, Naoki</creator><creator>NISHIZAWA, Hitoshi</creator><creator>MAEDA, Norikazu</creator><creator>MATSUDA, Morihiro</creator><creator>NAGARETANI, Hiroyuki</creator><creator>KIHARA, Shinji</creator><general>American Diabetes Association</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>7X8</scope></search><sort><creationdate>20021001</creationdate><title>Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9</title><author>KURIYAMA, Hiroshi ; SHIMOMURA, Iichiro ; NAKAMURA, Tadashi ; TOCHINO, Yoshihiro ; FUNAHASHI, Tohru ; MATSUZAWA, Yuji ; KISHIDA, Ken ; KONDO, Hidehiko ; FURUYAMA, Naoki ; NISHIZAWA, Hitoshi ; MAEDA, Norikazu ; MATSUDA, Morihiro ; NAGARETANI, Hiroyuki ; KIHARA, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624t-17d90363b837949cb8256751e2c9972817db5d3569638e3fd7bba5bbeeddfd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Aquaporins - genetics</topic><topic>Aquaporins - metabolism</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Carbohydrates</topic><topic>Carcinoma, Hepatocellular</topic><topic>Cloning, Molecular</topic><topic>Comorbidity</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Experimental - physiopathology</topic><topic>Diabetes research</topic><topic>Eating - physiology</topic><topic>Fasting - physiology</topic><topic>Fats - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation - physiology</topic><topic>Glycerin</topic><topic>Glycerol</topic><topic>Glycerol - metabolism</topic><topic>Glycerol Kinase - genetics</topic><topic>Insulin Resistance</topic><topic>Liver - metabolism</topic><topic>Liver Neoplasms</topic><topic>Male</topic><topic>Metabolisms and neurohumoral controls</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred ICR</topic><topic>Molecular Sequence Data</topic><topic>Obesity</topic><topic>Phosphoenolpyruvate Carboxykinase (GTP) - genetics</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>RNA, Messenger - analysis</topic><topic>Tumor Cells, Cultured</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KURIYAMA, Hiroshi</creatorcontrib><creatorcontrib>SHIMOMURA, Iichiro</creatorcontrib><creatorcontrib>NAKAMURA, Tadashi</creatorcontrib><creatorcontrib>TOCHINO, Yoshihiro</creatorcontrib><creatorcontrib>FUNAHASHI, Tohru</creatorcontrib><creatorcontrib>MATSUZAWA, Yuji</creatorcontrib><creatorcontrib>KISHIDA, Ken</creatorcontrib><creatorcontrib>KONDO, Hidehiko</creatorcontrib><creatorcontrib>FURUYAMA, Naoki</creatorcontrib><creatorcontrib>NISHIZAWA, Hitoshi</creatorcontrib><creatorcontrib>MAEDA, Norikazu</creatorcontrib><creatorcontrib>MATSUDA, Morihiro</creatorcontrib><creatorcontrib>NAGARETANI, Hiroyuki</creatorcontrib><creatorcontrib>KIHARA, Shinji</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KURIYAMA, Hiroshi</au><au>SHIMOMURA, Iichiro</au><au>NAKAMURA, Tadashi</au><au>TOCHINO, Yoshihiro</au><au>FUNAHASHI, Tohru</au><au>MATSUZAWA, Yuji</au><au>KISHIDA, Ken</au><au>KONDO, Hidehiko</au><au>FURUYAMA, Naoki</au><au>NISHIZAWA, Hitoshi</au><au>MAEDA, Norikazu</au><au>MATSUDA, Morihiro</au><au>NAGARETANI, Hiroyuki</au><au>KIHARA, Shinji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2002-10-01</date><risdate>2002</risdate><volume>51</volume><issue>10</issue><spage>2915</spage><epage>2921</epage><pages>2915-2921</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><coden>DIAEAZ</coden><abstract>Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9 Hiroshi Kuriyama , Iichiro Shimomura , Ken Kishida , Hidehiko Kondo , Naoki Furuyama , Hitoshi Nishizawa , Norikazu Maeda , Morihiro Matsuda , Hiroyuki Nagaretani , Shinji Kihara , Tadashi Nakamura , Yoshihiro Tochino , Tohru Funahashi and Yuji Matsuzawa From the Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan Abstract Plasma glycerol is a major substrate for hepatic gluconeogenesis. Aquaporin adipose (AQPap/7), an adipose-specific glycerol channel, provides fat-derived glycerol into plasma. In the present study, we cloned the coding and promoter regions of mouse aquaporin 9 (AQP9), a liver-specific glycerol channel. Fasting and refeeding of mice increased and decreased hepatic AQP9 mRNA levels, respectively. Insulin deficiency induced by streptozotocin resulted in increased hepatic AQP9 mRNA. These changes in hepatic AQP9 mRNA were accompanied by those of hepatic gluconeogenic mRNAs and plasma glycerol levels. In cultured hepatocytes, insulin downregulated AQP9 mRNA. The AQP9 promoter contained the negative insulin response element TGTTTTC at −496/−502, similar to the promoter of the AQPap/7 gene. In contrast, in insulin-resistant db +/ db + mice, AQPap/7 mRNA in fat and AQP9 mRNA in liver were increased, despite hyperinsulinemia, with high plasma glycerol and glucose levels. Glycerol infusion in the db +/ db + mice augmented hepatic glucose output. Our results indicate that coordinated regulations of fat-specific AQPap/7 and liver-specific AQP9 should be crucial to determine glucose metabolism in physiology and insulin resistance. Footnotes Address correspondence and reprint requests to Iichiro Shimomura Department of Organismal Biosystems, Graduate School of Frontier Bioscience, Department of Medicine and Pathophysiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: ichi{at}imed2.med.osaka-u.ac.jp . Received for publication 15 March 2002 and accepted in revised form 26 June 2002. AQP, aquaporin; AQPap/7, aquaporin adipose; DMEM, Dulbecco’s modified Eagle’s medium; FFA, free fatty acid; GlyK, glycerokinase; HSL, hormone-sensitive lipase; IRE, insulin response element; IRS, insulin receptor substrate; PEPCK, phosphoenolpyruvate carboxykinase; RACE, rapid amplification of cDNA ends; STZ, streptozotocin. DIABETES</abstract><cop>Alexandria, VA</cop><pub>American Diabetes Association</pub><pmid>12351427</pmid><doi>10.2337/diabetes.51.10.2915</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2002-10, Vol.51 (10), p.2915-2921
issn 0012-1797
1939-327X
language eng
recordid cdi_pascalfrancis_primary_13956859
source MEDLINE; EZB Electronic Journals Library
subjects Amino Acid Sequence
Animals
Aquaporins - genetics
Aquaporins - metabolism
Base Sequence
Biological and medical sciences
Carbohydrates
Carcinoma, Hepatocellular
Cloning, Molecular
Comorbidity
Diabetes
Diabetes mellitus
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Experimental - physiopathology
Diabetes research
Eating - physiology
Fasting - physiology
Fats - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation - physiology
Glycerin
Glycerol
Glycerol - metabolism
Glycerol Kinase - genetics
Insulin Resistance
Liver - metabolism
Liver Neoplasms
Male
Metabolisms and neurohumoral controls
Mice
Mice, Inbred C57BL
Mice, Inbred ICR
Molecular Sequence Data
Obesity
Phosphoenolpyruvate Carboxykinase (GTP) - genetics
Physiological aspects
Rats
RNA, Messenger - analysis
Tumor Cells, Cultured
Vertebrates: anatomy and physiology, studies on body, several organs or systems
title Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinated%20Regulation%20of%20Fat-Specific%20and%20Liver-Specific%20Glycerol%20Channels,%20Aquaporin%20Adipose%20and%20Aquaporin%209&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=KURIYAMA,%20Hiroshi&rft.date=2002-10-01&rft.volume=51&rft.issue=10&rft.spage=2915&rft.epage=2921&rft.pages=2915-2921&rft.issn=0012-1797&rft.eissn=1939-327X&rft.coden=DIAEAZ&rft_id=info:doi/10.2337/diabetes.51.10.2915&rft_dat=%3Cgale_pasca%3EA92520031%3C/gale_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72128651&rft_id=info:pmid/12351427&rft_galeid=A92520031&rfr_iscdi=true