Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization
Carbon nanotubes have been the subject of considerable attention because of their exceptional physical and mechanical properties. These properties observed at the nanoscale have motivated researchers to utilize carbon nanotubes as reinforcement in composite materials. In this research, a micro-scale...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2002-08, Vol.35 (16), p.L77-L80 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carbon nanotubes have been the subject of considerable attention because of their exceptional physical and mechanical properties. These properties observed at the nanoscale have motivated researchers to utilize carbon nanotubes as reinforcement in composite materials. In this research, a micro-scale twin-screw extruder was used to achieve dispersion of multi-walled carbon nanotubes in a polystyrene matrix. Highly aligned nanocomposite films were produced by extruding the polymer melt through a rectangular die and drawing the film prior to cooling. Randomly oriented nanocomposites were produced by achieving dispersion first with the twin-screw extruder followed by pressing a film using a hydraulic press. The tensile behavior of the aligned and random nanocomposite films with 5 wt. percent loading of nanotubes was characterized. Addition of nanotubes increased the tensile modulus, yield strength and ultimate strengths of the polymer films, and the improvement in elastic modulus with the aligned nanotube composite is five times greater than the improvement for the randomly oriented composite. (Author) |
---|---|
ISSN: | 0022-3727 1361-6463 |
DOI: | 10.1088/0022-3727/35/16/103 |