The Pareto Envelope-Based Selection Algorithm for Multiobjective Optimization

We introduce a new multiobjective evolutionary algorithm called PESA (the Pareto Envelope-based Selection Algorithm), in which selection and diversity maintenance are controlled via a simple hyper-grid based scheme. PESA’s selection method is relatively unusual in comparison with current well known...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Corne, David W., Knowles, Joshua D., Oates, Martin J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 848
container_issue
container_start_page 839
container_title
container_volume
creator Corne, David W.
Knowles, Joshua D.
Oates, Martin J.
description We introduce a new multiobjective evolutionary algorithm called PESA (the Pareto Envelope-based Selection Algorithm), in which selection and diversity maintenance are controlled via a simple hyper-grid based scheme. PESA’s selection method is relatively unusual in comparison with current well known multiobjective evolutionary algorithms, which tend to use counts based on the degree to which solutions dominate others in the population. The diversity maintenance method is similar to that used by certain other methods. The main attraction of PESA is the integration of selection and diversity maintenance, whereby essentially the same technique is used for both tasks. The resulting algorithm is simple to describe, with full pseudocode provided here and real code available from the authors. We compare PESA with two recent strong-performing MOEAs on some multiobjective test problems recently proposed by Deb. We find that PESA emerges as the best method overall on these problems.
doi_str_mv 10.1007/3-540-45356-3_82
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_1384679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1384679</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2042-5a04896fdf75b92af696bc638c7bc4a44caead28f169d2d1490c05a5ee3516ec3</originalsourceid><addsrcrecordid>eNotkDtPwzAUhc1LopTujBlYXWxfP-KxVOUhtSoSZbYcx25T0iSKQyX49SSFuxzpfEd3-BC6o2RKCVEPgAUnmAsQEoNJ2RmaaJVCX546dY5GVFKKAbi-QDcnQImQ7BKNCBCGteJwjSYx7kl_wIRgeoRWm51P3mzruzpZVEdf1o3Hjzb6PHn3pXddUVfJrNzWbdHtDkmo22T1VfZtth_g0SfrpisOxY8dlrfoKtgy-sl_jtHH02Izf8HL9fPrfLbEe0Y4w8ISnmoZ8qBEppkNUsvMSUidyhy3nDvrbc7SQKXOWU65Jo4IK7wHQaV3MEb3f38bG50tQ2srV0TTtMXBtt-GQsql0v1s-jeLPam2vjVZXX9GQ4kZnBowvSVz8mcGp_ALaF9k5A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Pareto Envelope-Based Selection Algorithm for Multiobjective Optimization</title><source>Springer Books</source><creator>Corne, David W. ; Knowles, Joshua D. ; Oates, Martin J.</creator><contributor>Lutton, Evelyne ; Merelo, Juan Julian ; Schoenauer, Marc ; Deb, Kalyanmoy ; Yao, Xin ; Rudolph, Günther ; Schwefel, Hans-Paul</contributor><creatorcontrib>Corne, David W. ; Knowles, Joshua D. ; Oates, Martin J. ; Lutton, Evelyne ; Merelo, Juan Julian ; Schoenauer, Marc ; Deb, Kalyanmoy ; Yao, Xin ; Rudolph, Günther ; Schwefel, Hans-Paul</creatorcontrib><description>We introduce a new multiobjective evolutionary algorithm called PESA (the Pareto Envelope-based Selection Algorithm), in which selection and diversity maintenance are controlled via a simple hyper-grid based scheme. PESA’s selection method is relatively unusual in comparison with current well known multiobjective evolutionary algorithms, which tend to use counts based on the degree to which solutions dominate others in the population. The diversity maintenance method is similar to that used by certain other methods. The main attraction of PESA is the integration of selection and diversity maintenance, whereby essentially the same technique is used for both tasks. The resulting algorithm is simple to describe, with full pseudocode provided here and real code available from the authors. We compare PESA with two recent strong-performing MOEAs on some multiobjective test problems recently proposed by Deb. We find that PESA emerges as the best method overall on these problems.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540410562</identifier><identifier>ISBN: 9783540410560</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540453567</identifier><identifier>EISBN: 3540453563</identifier><identifier>DOI: 10.1007/3-540-45356-3_82</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Multiobjective Evolutionary Algorithm ; Multiobjective Genetic Algorithm ; Multiobjective Optimization ; Pareto Front ; Pareto Frontier ; Problem solving, game playing</subject><ispartof>Lecture notes in computer science, 2000, p.839-848</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45356-3_82$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45356-3_82$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1384679$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Lutton, Evelyne</contributor><contributor>Merelo, Juan Julian</contributor><contributor>Schoenauer, Marc</contributor><contributor>Deb, Kalyanmoy</contributor><contributor>Yao, Xin</contributor><contributor>Rudolph, Günther</contributor><contributor>Schwefel, Hans-Paul</contributor><creatorcontrib>Corne, David W.</creatorcontrib><creatorcontrib>Knowles, Joshua D.</creatorcontrib><creatorcontrib>Oates, Martin J.</creatorcontrib><title>The Pareto Envelope-Based Selection Algorithm for Multiobjective Optimization</title><title>Lecture notes in computer science</title><description>We introduce a new multiobjective evolutionary algorithm called PESA (the Pareto Envelope-based Selection Algorithm), in which selection and diversity maintenance are controlled via a simple hyper-grid based scheme. PESA’s selection method is relatively unusual in comparison with current well known multiobjective evolutionary algorithms, which tend to use counts based on the degree to which solutions dominate others in the population. The diversity maintenance method is similar to that used by certain other methods. The main attraction of PESA is the integration of selection and diversity maintenance, whereby essentially the same technique is used for both tasks. The resulting algorithm is simple to describe, with full pseudocode provided here and real code available from the authors. We compare PESA with two recent strong-performing MOEAs on some multiobjective test problems recently proposed by Deb. We find that PESA emerges as the best method overall on these problems.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Multiobjective Evolutionary Algorithm</subject><subject>Multiobjective Genetic Algorithm</subject><subject>Multiobjective Optimization</subject><subject>Pareto Front</subject><subject>Pareto Frontier</subject><subject>Problem solving, game playing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540410562</isbn><isbn>9783540410560</isbn><isbn>9783540453567</isbn><isbn>3540453563</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkDtPwzAUhc1LopTujBlYXWxfP-KxVOUhtSoSZbYcx25T0iSKQyX49SSFuxzpfEd3-BC6o2RKCVEPgAUnmAsQEoNJ2RmaaJVCX546dY5GVFKKAbi-QDcnQImQ7BKNCBCGteJwjSYx7kl_wIRgeoRWm51P3mzruzpZVEdf1o3Hjzb6PHn3pXddUVfJrNzWbdHtDkmo22T1VfZtth_g0SfrpisOxY8dlrfoKtgy-sl_jtHH02Izf8HL9fPrfLbEe0Y4w8ISnmoZ8qBEppkNUsvMSUidyhy3nDvrbc7SQKXOWU65Jo4IK7wHQaV3MEb3f38bG50tQ2srV0TTtMXBtt-GQsql0v1s-jeLPam2vjVZXX9GQ4kZnBowvSVz8mcGp_ALaF9k5A</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Corne, David W.</creator><creator>Knowles, Joshua D.</creator><creator>Oates, Martin J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2000</creationdate><title>The Pareto Envelope-Based Selection Algorithm for Multiobjective Optimization</title><author>Corne, David W. ; Knowles, Joshua D. ; Oates, Martin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2042-5a04896fdf75b92af696bc638c7bc4a44caead28f169d2d1490c05a5ee3516ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Multiobjective Evolutionary Algorithm</topic><topic>Multiobjective Genetic Algorithm</topic><topic>Multiobjective Optimization</topic><topic>Pareto Front</topic><topic>Pareto Frontier</topic><topic>Problem solving, game playing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corne, David W.</creatorcontrib><creatorcontrib>Knowles, Joshua D.</creatorcontrib><creatorcontrib>Oates, Martin J.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corne, David W.</au><au>Knowles, Joshua D.</au><au>Oates, Martin J.</au><au>Lutton, Evelyne</au><au>Merelo, Juan Julian</au><au>Schoenauer, Marc</au><au>Deb, Kalyanmoy</au><au>Yao, Xin</au><au>Rudolph, Günther</au><au>Schwefel, Hans-Paul</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Pareto Envelope-Based Selection Algorithm for Multiobjective Optimization</atitle><btitle>Lecture notes in computer science</btitle><date>2000</date><risdate>2000</risdate><spage>839</spage><epage>848</epage><pages>839-848</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540410562</isbn><isbn>9783540410560</isbn><eisbn>9783540453567</eisbn><eisbn>3540453563</eisbn><abstract>We introduce a new multiobjective evolutionary algorithm called PESA (the Pareto Envelope-based Selection Algorithm), in which selection and diversity maintenance are controlled via a simple hyper-grid based scheme. PESA’s selection method is relatively unusual in comparison with current well known multiobjective evolutionary algorithms, which tend to use counts based on the degree to which solutions dominate others in the population. The diversity maintenance method is similar to that used by certain other methods. The main attraction of PESA is the integration of selection and diversity maintenance, whereby essentially the same technique is used for both tasks. The resulting algorithm is simple to describe, with full pseudocode provided here and real code available from the authors. We compare PESA with two recent strong-performing MOEAs on some multiobjective test problems recently proposed by Deb. We find that PESA emerges as the best method overall on these problems.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/3-540-45356-3_82</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2000, p.839-848
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1384679
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Multiobjective Evolutionary Algorithm
Multiobjective Genetic Algorithm
Multiobjective Optimization
Pareto Front
Pareto Frontier
Problem solving, game playing
title The Pareto Envelope-Based Selection Algorithm for Multiobjective Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Pareto%20Envelope-Based%20Selection%20Algorithm%20for%20Multiobjective%20Optimization&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Corne,%20David%20W.&rft.date=2000&rft.spage=839&rft.epage=848&rft.pages=839-848&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540410562&rft.isbn_list=9783540410560&rft_id=info:doi/10.1007/3-540-45356-3_82&rft_dat=%3Cpascalfrancis_sprin%3E1384679%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540453567&rft.eisbn_list=3540453563&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true