Computing Optimal Linear Layouts of Trees in Linear Time
We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the ru...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | |
container_start_page | 403 |
container_title | |
container_volume | 1879 |
creator | Skodinis, Konstantin |
description | We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the running time of former algorithms from O(n log n) to O(n) and answers two related open questions raised in [7] and [15]1. |
doi_str_mv | 10.1007/3-540-45253-2_37 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1382975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071876_42_415</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1827-d41629cb849cf2487119fd5a0ce48106f6f30b3348cc4caf5620c381713bb7383</originalsourceid><addsrcrecordid>eNo1UDtPwzAQNk8RSnfGDKwpPp8d2yOqeEmRupTZclynBNok2OnQf4_bwi0nfS_dfYTcA50BpfIRC8FpwQUTWDCD8ozcYkKOADsnGZQABSLXF2SqpTpyycjhkmQUKSu05HhNMi2UEBq0vCHTGL9oGmQASmdEzfvtsBvbbp0vhrHd2k1etZ23Ia_svt-NMe-bfBm8j3nb_VPLduvvyFVjN9FP__aEfLw8L-dvRbV4fZ8_VcUAislixaFk2tWKa9cwriSAblbCUue5Alo2ZYO0Tj8o57izjSgZdahAAta1RIUT8nDKHWx0dtME27k2miGkW8PeACqmpUiy2UkWE9OtfTB1339HA9QcqjRoUjnm2Jw5VJkM-Jcb-p-dj6PxB4fz3Rjsxn3aYfQhGqQSlCwNZ4aDwF8ZbW6x</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071876_42_415</pqid></control><display><type>book_chapter</type><title>Computing Optimal Linear Layouts of Trees in Linear Time</title><source>Springer Books</source><creator>Skodinis, Konstantin</creator><contributor>Paterson, Mike ; Paterson, Mike S.</contributor><creatorcontrib>Skodinis, Konstantin ; Paterson, Mike ; Paterson, Mike S.</creatorcontrib><description>We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the running time of former algorithms from O(n log n) to O(n) and answers two related open questions raised in [7] and [15]1.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540410041</identifier><identifier>ISBN: 354041004X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540452532</identifier><identifier>EISBN: 9783540452539</identifier><identifier>DOI: 10.1007/3-540-45253-2_37</identifier><identifier>OCLC: 958559197</identifier><identifier>LCCallNum: QA76.6-76.66</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Chordal Graph ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Interval Graph ; Linear Time ; Linear Time Algorithm ; Optimal Layout ; Theoretical computing</subject><ispartof>Algorithms - ESA 2000, 2000, Vol.1879, p.403-414</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071876-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45253-2_37$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45253-2_37$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1382975$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Paterson, Mike</contributor><contributor>Paterson, Mike S.</contributor><creatorcontrib>Skodinis, Konstantin</creatorcontrib><title>Computing Optimal Linear Layouts of Trees in Linear Time</title><title>Algorithms - ESA 2000</title><description>We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the running time of former algorithms from O(n log n) to O(n) and answers two related open questions raised in [7] and [15]1.</description><subject>Applied sciences</subject><subject>Chordal Graph</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Interval Graph</subject><subject>Linear Time</subject><subject>Linear Time Algorithm</subject><subject>Optimal Layout</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540410041</isbn><isbn>354041004X</isbn><isbn>3540452532</isbn><isbn>9783540452539</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2000</creationdate><recordtype>book_chapter</recordtype><recordid>eNo1UDtPwzAQNk8RSnfGDKwpPp8d2yOqeEmRupTZclynBNok2OnQf4_bwi0nfS_dfYTcA50BpfIRC8FpwQUTWDCD8ozcYkKOADsnGZQABSLXF2SqpTpyycjhkmQUKSu05HhNMi2UEBq0vCHTGL9oGmQASmdEzfvtsBvbbp0vhrHd2k1etZ23Ia_svt-NMe-bfBm8j3nb_VPLduvvyFVjN9FP__aEfLw8L-dvRbV4fZ8_VcUAislixaFk2tWKa9cwriSAblbCUue5Alo2ZYO0Tj8o57izjSgZdahAAta1RIUT8nDKHWx0dtME27k2miGkW8PeACqmpUiy2UkWE9OtfTB1339HA9QcqjRoUjnm2Jw5VJkM-Jcb-p-dj6PxB4fz3Rjsxn3aYfQhGqQSlCwNZ4aDwF8ZbW6x</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Skodinis, Konstantin</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2000</creationdate><title>Computing Optimal Linear Layouts of Trees in Linear Time</title><author>Skodinis, Konstantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1827-d41629cb849cf2487119fd5a0ce48106f6f30b3348cc4caf5620c381713bb7383</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Chordal Graph</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Interval Graph</topic><topic>Linear Time</topic><topic>Linear Time Algorithm</topic><topic>Optimal Layout</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skodinis, Konstantin</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skodinis, Konstantin</au><au>Paterson, Mike</au><au>Paterson, Mike S.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Computing Optimal Linear Layouts of Trees in Linear Time</atitle><btitle>Algorithms - ESA 2000</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2000</date><risdate>2000</risdate><volume>1879</volume><spage>403</spage><epage>414</epage><pages>403-414</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540410041</isbn><isbn>354041004X</isbn><eisbn>3540452532</eisbn><eisbn>9783540452539</eisbn><abstract>We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the running time of former algorithms from O(n log n) to O(n) and answers two related open questions raised in [7] and [15]1.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45253-2_37</doi><oclcid>958559197</oclcid><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Algorithms - ESA 2000, 2000, Vol.1879, p.403-414 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1382975 |
source | Springer Books |
subjects | Applied sciences Chordal Graph Computer science control theory systems Exact sciences and technology Information retrieval. Graph Interval Graph Linear Time Linear Time Algorithm Optimal Layout Theoretical computing |
title | Computing Optimal Linear Layouts of Trees in Linear Time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Computing%20Optimal%20Linear%20Layouts%20of%20Trees%20in%20Linear%20Time&rft.btitle=Algorithms%20-%20ESA%202000&rft.au=Skodinis,%20Konstantin&rft.date=2000&rft.volume=1879&rft.spage=403&rft.epage=414&rft.pages=403-414&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540410041&rft.isbn_list=354041004X&rft_id=info:doi/10.1007/3-540-45253-2_37&rft_dat=%3Cproquest_pasca%3EEBC3071876_42_415%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540452532&rft.eisbn_list=9783540452539&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071876_42_415&rft_id=info:pmid/&rfr_iscdi=true |