Computing Optimal Linear Layouts of Trees in Linear Time

We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the ru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Skodinis, Konstantin
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue
container_start_page 403
container_title
container_volume 1879
creator Skodinis, Konstantin
description We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the running time of former algorithms from O(n log n) to O(n) and answers two related open questions raised in [7] and [15]1.
doi_str_mv 10.1007/3-540-45253-2_37
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1382975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071876_42_415</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1827-d41629cb849cf2487119fd5a0ce48106f6f30b3348cc4caf5620c381713bb7383</originalsourceid><addsrcrecordid>eNo1UDtPwzAQNk8RSnfGDKwpPp8d2yOqeEmRupTZclynBNok2OnQf4_bwi0nfS_dfYTcA50BpfIRC8FpwQUTWDCD8ozcYkKOADsnGZQABSLXF2SqpTpyycjhkmQUKSu05HhNMi2UEBq0vCHTGL9oGmQASmdEzfvtsBvbbp0vhrHd2k1etZ23Ia_svt-NMe-bfBm8j3nb_VPLduvvyFVjN9FP__aEfLw8L-dvRbV4fZ8_VcUAislixaFk2tWKa9cwriSAblbCUue5Alo2ZYO0Tj8o57izjSgZdahAAta1RIUT8nDKHWx0dtME27k2miGkW8PeACqmpUiy2UkWE9OtfTB1339HA9QcqjRoUjnm2Jw5VJkM-Jcb-p-dj6PxB4fz3Rjsxn3aYfQhGqQSlCwNZ4aDwF8ZbW6x</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071876_42_415</pqid></control><display><type>book_chapter</type><title>Computing Optimal Linear Layouts of Trees in Linear Time</title><source>Springer Books</source><creator>Skodinis, Konstantin</creator><contributor>Paterson, Mike ; Paterson, Mike S.</contributor><creatorcontrib>Skodinis, Konstantin ; Paterson, Mike ; Paterson, Mike S.</creatorcontrib><description>We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the running time of former algorithms from O(n log n) to O(n) and answers two related open questions raised in [7] and [15]1.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540410041</identifier><identifier>ISBN: 354041004X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540452532</identifier><identifier>EISBN: 9783540452539</identifier><identifier>DOI: 10.1007/3-540-45253-2_37</identifier><identifier>OCLC: 958559197</identifier><identifier>LCCallNum: QA76.6-76.66</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Chordal Graph ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Interval Graph ; Linear Time ; Linear Time Algorithm ; Optimal Layout ; Theoretical computing</subject><ispartof>Algorithms - ESA 2000, 2000, Vol.1879, p.403-414</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071876-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45253-2_37$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45253-2_37$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1382975$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Paterson, Mike</contributor><contributor>Paterson, Mike S.</contributor><creatorcontrib>Skodinis, Konstantin</creatorcontrib><title>Computing Optimal Linear Layouts of Trees in Linear Time</title><title>Algorithms - ESA 2000</title><description>We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the running time of former algorithms from O(n log n) to O(n) and answers two related open questions raised in [7] and [15]1.</description><subject>Applied sciences</subject><subject>Chordal Graph</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Interval Graph</subject><subject>Linear Time</subject><subject>Linear Time Algorithm</subject><subject>Optimal Layout</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540410041</isbn><isbn>354041004X</isbn><isbn>3540452532</isbn><isbn>9783540452539</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2000</creationdate><recordtype>book_chapter</recordtype><recordid>eNo1UDtPwzAQNk8RSnfGDKwpPp8d2yOqeEmRupTZclynBNok2OnQf4_bwi0nfS_dfYTcA50BpfIRC8FpwQUTWDCD8ozcYkKOADsnGZQABSLXF2SqpTpyycjhkmQUKSu05HhNMi2UEBq0vCHTGL9oGmQASmdEzfvtsBvbbp0vhrHd2k1etZ23Ia_svt-NMe-bfBm8j3nb_VPLduvvyFVjN9FP__aEfLw8L-dvRbV4fZ8_VcUAislixaFk2tWKa9cwriSAblbCUue5Alo2ZYO0Tj8o57izjSgZdahAAta1RIUT8nDKHWx0dtME27k2miGkW8PeACqmpUiy2UkWE9OtfTB1339HA9QcqjRoUjnm2Jw5VJkM-Jcb-p-dj6PxB4fz3Rjsxn3aYfQhGqQSlCwNZ4aDwF8ZbW6x</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Skodinis, Konstantin</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2000</creationdate><title>Computing Optimal Linear Layouts of Trees in Linear Time</title><author>Skodinis, Konstantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1827-d41629cb849cf2487119fd5a0ce48106f6f30b3348cc4caf5620c381713bb7383</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Chordal Graph</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Interval Graph</topic><topic>Linear Time</topic><topic>Linear Time Algorithm</topic><topic>Optimal Layout</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skodinis, Konstantin</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skodinis, Konstantin</au><au>Paterson, Mike</au><au>Paterson, Mike S.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Computing Optimal Linear Layouts of Trees in Linear Time</atitle><btitle>Algorithms - ESA 2000</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2000</date><risdate>2000</risdate><volume>1879</volume><spage>403</spage><epage>414</epage><pages>403-414</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540410041</isbn><isbn>354041004X</isbn><eisbn>3540452532</eisbn><eisbn>9783540452539</eisbn><abstract>We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the running time of former algorithms from O(n log n) to O(n) and answers two related open questions raised in [7] and [15]1.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45253-2_37</doi><oclcid>958559197</oclcid><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Algorithms - ESA 2000, 2000, Vol.1879, p.403-414
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1382975
source Springer Books
subjects Applied sciences
Chordal Graph
Computer science
control theory
systems
Exact sciences and technology
Information retrieval. Graph
Interval Graph
Linear Time
Linear Time Algorithm
Optimal Layout
Theoretical computing
title Computing Optimal Linear Layouts of Trees in Linear Time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Computing%20Optimal%20Linear%20Layouts%20of%20Trees%20in%20Linear%20Time&rft.btitle=Algorithms%20-%20ESA%202000&rft.au=Skodinis,%20Konstantin&rft.date=2000&rft.volume=1879&rft.spage=403&rft.epage=414&rft.pages=403-414&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540410041&rft.isbn_list=354041004X&rft_id=info:doi/10.1007/3-540-45253-2_37&rft_dat=%3Cproquest_pasca%3EEBC3071876_42_415%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540452532&rft.eisbn_list=9783540452539&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071876_42_415&rft_id=info:pmid/&rfr_iscdi=true