Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform

We focus on methods for the preprocessing of neurons from three-dimensional (3-D) confocal microscopy images, which are needed for a subsequent detailed morphologic analysis. Due to the specific image properties of confocal microscopy scans, we had to include several heuristic approaches which are b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2002-07, Vol.11 (7), p.790-801
Hauptverfasser: Dima, A., Scholz, M., Obermayer, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 801
container_issue 7
container_start_page 790
container_title IEEE transactions on image processing
container_volume 11
creator Dima, A.
Scholz, M.
Obermayer, K.
description We focus on methods for the preprocessing of neurons from three-dimensional (3-D) confocal microscopy images, which are needed for a subsequent detailed morphologic analysis. Due to the specific image properties of confocal microscopy scans, we had to include several heuristic approaches which are based on multiscale edges to guarantee meaningful results: (1) a reliable segmentation of objects of different sizes independent of image contrast, and, based on it, (2) the computation of skeleton points along the branch central axes, and (3) the reliable detection of branching points and of problematic regions. These are preprocessing steps to gather information which is needed by the subsequent construction of a graph representing the geometry of the neuron and a final surface reconstruction.
doi_str_mv 10.1109/TIP.2002.800888
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_13824607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1021085</ieee_id><sourcerecordid>28624395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-f72045eaa9c88f1afa093a8e86681d3b9a7962e9f71d7841024ffee97819bccb3</originalsourceid><addsrcrecordid>eNqF0s9rFTEQB_BFFFurZw-CBMHqZV8zSTY_jqVWLRT0UM9LNjupW98mz2RXrX-9WfZBxUM9ZQifTMLkW1XPgW4AqDm5uvi8YZSyjaZUa_2gOgQjoKZUsIelpo2qFQhzUD3J-YZSEA3Ix9UBaCaEVM1h9et0nuJop8GRjNcjhqnUMRAbepK_4RanGIbf6170JOCcYsjEpzgSF4OPzm7JOLgUs4u7WzKM9hoz6WzGnpQz01ckvH5HftofSzMyJRuyj2l8Wj3ydpvx2X49qr68P786-1hffvpwcXZ6WbuGs6n2ilHRoLXGae3BeksNtxq1lBp63hmrjGRovIJeaQGUCe8RjdJgOuc6flS9WfvuUvw-Y57accgOt1sbMM65VZw33DQNK_L4Xsm0ZKLQ_0OljJBcFvj2XghSAZeCc1Xoq3_oTZxTKJNptRZcgwYo6GRFy7hzQt_uUhl4um2Btkse2pKHdslDu-ahnHi5bzt3I_Z3fh-AAl7vgc3lK335HjfkO8cLlHR534vVDYj417UMqG74H2F9xlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884381811</pqid></control><display><type>article</type><title>Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform</title><source>IEEE Xplore</source><creator>Dima, A. ; Scholz, M. ; Obermayer, K.</creator><creatorcontrib>Dima, A. ; Scholz, M. ; Obermayer, K.</creatorcontrib><description>We focus on methods for the preprocessing of neurons from three-dimensional (3-D) confocal microscopy images, which are needed for a subsequent detailed morphologic analysis. Due to the specific image properties of confocal microscopy scans, we had to include several heuristic approaches which are based on multiscale edges to guarantee meaningful results: (1) a reliable segmentation of objects of different sizes independent of image contrast, and, based on it, (2) the computation of skeleton points along the branch central axes, and (3) the reliable detection of branching points and of problematic regions. These are preprocessing steps to gather information which is needed by the subsequent construction of a graph representing the geometry of the neuron and a final surface reconstruction.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2002.800888</identifier><identifier>PMID: 18244675</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Confocal ; Exact sciences and technology ; Image analysis ; Image contrast ; Image edge detection ; Image segmentation ; Information geometry ; Information, signal and communications theory ; Microscopy ; Neurons ; Object detection ; Pattern recognition ; Preprocessing ; Segmentation ; Signal processing ; Skeleton ; Surface morphology ; Telecommunications and information theory ; Wavelet transforms</subject><ispartof>IEEE transactions on image processing, 2002-07, Vol.11 (7), p.790-801</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-f72045eaa9c88f1afa093a8e86681d3b9a7962e9f71d7841024ffee97819bccb3</citedby><cites>FETCH-LOGICAL-c532t-f72045eaa9c88f1afa093a8e86681d3b9a7962e9f71d7841024ffee97819bccb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1021085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1021085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13824607$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dima, A.</creatorcontrib><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Obermayer, K.</creatorcontrib><title>Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We focus on methods for the preprocessing of neurons from three-dimensional (3-D) confocal microscopy images, which are needed for a subsequent detailed morphologic analysis. Due to the specific image properties of confocal microscopy scans, we had to include several heuristic approaches which are based on multiscale edges to guarantee meaningful results: (1) a reliable segmentation of objects of different sizes independent of image contrast, and, based on it, (2) the computation of skeleton points along the branch central axes, and (3) the reliable detection of branching points and of problematic regions. These are preprocessing steps to gather information which is needed by the subsequent construction of a graph representing the geometry of the neuron and a final surface reconstruction.</description><subject>Applied sciences</subject><subject>Confocal</subject><subject>Exact sciences and technology</subject><subject>Image analysis</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Information geometry</subject><subject>Information, signal and communications theory</subject><subject>Microscopy</subject><subject>Neurons</subject><subject>Object detection</subject><subject>Pattern recognition</subject><subject>Preprocessing</subject><subject>Segmentation</subject><subject>Signal processing</subject><subject>Skeleton</subject><subject>Surface morphology</subject><subject>Telecommunications and information theory</subject><subject>Wavelet transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0s9rFTEQB_BFFFurZw-CBMHqZV8zSTY_jqVWLRT0UM9LNjupW98mz2RXrX-9WfZBxUM9ZQifTMLkW1XPgW4AqDm5uvi8YZSyjaZUa_2gOgQjoKZUsIelpo2qFQhzUD3J-YZSEA3Ix9UBaCaEVM1h9et0nuJop8GRjNcjhqnUMRAbepK_4RanGIbf6170JOCcYsjEpzgSF4OPzm7JOLgUs4u7WzKM9hoz6WzGnpQz01ckvH5HftofSzMyJRuyj2l8Wj3ydpvx2X49qr68P786-1hffvpwcXZ6WbuGs6n2ilHRoLXGae3BeksNtxq1lBp63hmrjGRovIJeaQGUCe8RjdJgOuc6flS9WfvuUvw-Y57accgOt1sbMM65VZw33DQNK_L4Xsm0ZKLQ_0OljJBcFvj2XghSAZeCc1Xoq3_oTZxTKJNptRZcgwYo6GRFy7hzQt_uUhl4um2Btkse2pKHdslDu-ahnHi5bzt3I_Z3fh-AAl7vgc3lK335HjfkO8cLlHR534vVDYj417UMqG74H2F9xlw</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Dima, A.</creator><creator>Scholz, M.</creator><creator>Obermayer, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20020701</creationdate><title>Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform</title><author>Dima, A. ; Scholz, M. ; Obermayer, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-f72045eaa9c88f1afa093a8e86681d3b9a7962e9f71d7841024ffee97819bccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Confocal</topic><topic>Exact sciences and technology</topic><topic>Image analysis</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Information geometry</topic><topic>Information, signal and communications theory</topic><topic>Microscopy</topic><topic>Neurons</topic><topic>Object detection</topic><topic>Pattern recognition</topic><topic>Preprocessing</topic><topic>Segmentation</topic><topic>Signal processing</topic><topic>Skeleton</topic><topic>Surface morphology</topic><topic>Telecommunications and information theory</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dima, A.</creatorcontrib><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Obermayer, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dima, A.</au><au>Scholz, M.</au><au>Obermayer, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>11</volume><issue>7</issue><spage>790</spage><epage>801</epage><pages>790-801</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We focus on methods for the preprocessing of neurons from three-dimensional (3-D) confocal microscopy images, which are needed for a subsequent detailed morphologic analysis. Due to the specific image properties of confocal microscopy scans, we had to include several heuristic approaches which are based on multiscale edges to guarantee meaningful results: (1) a reliable segmentation of objects of different sizes independent of image contrast, and, based on it, (2) the computation of skeleton points along the branch central axes, and (3) the reliable detection of branching points and of problematic regions. These are preprocessing steps to gather information which is needed by the subsequent construction of a graph representing the geometry of the neuron and a final surface reconstruction.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18244675</pmid><doi>10.1109/TIP.2002.800888</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2002-07, Vol.11 (7), p.790-801
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_13824607
source IEEE Xplore
subjects Applied sciences
Confocal
Exact sciences and technology
Image analysis
Image contrast
Image edge detection
Image segmentation
Information geometry
Information, signal and communications theory
Microscopy
Neurons
Object detection
Pattern recognition
Preprocessing
Segmentation
Signal processing
Skeleton
Surface morphology
Telecommunications and information theory
Wavelet transforms
title Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20segmentation%20and%20skeletonization%20of%20neurons%20from%20confocal%20microscopy%20images%20based%20on%20the%203-D%20wavelet%20transform&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Dima,%20A.&rft.date=2002-07-01&rft.volume=11&rft.issue=7&rft.spage=790&rft.epage=801&rft.pages=790-801&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2002.800888&rft_dat=%3Cproquest_RIE%3E28624395%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884381811&rft_id=info:pmid/18244675&rft_ieee_id=1021085&rfr_iscdi=true