Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform
We focus on methods for the preprocessing of neurons from three-dimensional (3-D) confocal microscopy images, which are needed for a subsequent detailed morphologic analysis. Due to the specific image properties of confocal microscopy scans, we had to include several heuristic approaches which are b...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2002-07, Vol.11 (7), p.790-801 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 801 |
---|---|
container_issue | 7 |
container_start_page | 790 |
container_title | IEEE transactions on image processing |
container_volume | 11 |
creator | Dima, A. Scholz, M. Obermayer, K. |
description | We focus on methods for the preprocessing of neurons from three-dimensional (3-D) confocal microscopy images, which are needed for a subsequent detailed morphologic analysis. Due to the specific image properties of confocal microscopy scans, we had to include several heuristic approaches which are based on multiscale edges to guarantee meaningful results: (1) a reliable segmentation of objects of different sizes independent of image contrast, and, based on it, (2) the computation of skeleton points along the branch central axes, and (3) the reliable detection of branching points and of problematic regions. These are preprocessing steps to gather information which is needed by the subsequent construction of a graph representing the geometry of the neuron and a final surface reconstruction. |
doi_str_mv | 10.1109/TIP.2002.800888 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_13824607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1021085</ieee_id><sourcerecordid>28624395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-f72045eaa9c88f1afa093a8e86681d3b9a7962e9f71d7841024ffee97819bccb3</originalsourceid><addsrcrecordid>eNqF0s9rFTEQB_BFFFurZw-CBMHqZV8zSTY_jqVWLRT0UM9LNjupW98mz2RXrX-9WfZBxUM9ZQifTMLkW1XPgW4AqDm5uvi8YZSyjaZUa_2gOgQjoKZUsIelpo2qFQhzUD3J-YZSEA3Ix9UBaCaEVM1h9et0nuJop8GRjNcjhqnUMRAbepK_4RanGIbf6170JOCcYsjEpzgSF4OPzm7JOLgUs4u7WzKM9hoz6WzGnpQz01ckvH5HftofSzMyJRuyj2l8Wj3ydpvx2X49qr68P786-1hffvpwcXZ6WbuGs6n2ilHRoLXGae3BeksNtxq1lBp63hmrjGRovIJeaQGUCe8RjdJgOuc6flS9WfvuUvw-Y57accgOt1sbMM65VZw33DQNK_L4Xsm0ZKLQ_0OljJBcFvj2XghSAZeCc1Xoq3_oTZxTKJNptRZcgwYo6GRFy7hzQt_uUhl4um2Btkse2pKHdslDu-ahnHi5bzt3I_Z3fh-AAl7vgc3lK335HjfkO8cLlHR534vVDYj417UMqG74H2F9xlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884381811</pqid></control><display><type>article</type><title>Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform</title><source>IEEE Xplore</source><creator>Dima, A. ; Scholz, M. ; Obermayer, K.</creator><creatorcontrib>Dima, A. ; Scholz, M. ; Obermayer, K.</creatorcontrib><description>We focus on methods for the preprocessing of neurons from three-dimensional (3-D) confocal microscopy images, which are needed for a subsequent detailed morphologic analysis. Due to the specific image properties of confocal microscopy scans, we had to include several heuristic approaches which are based on multiscale edges to guarantee meaningful results: (1) a reliable segmentation of objects of different sizes independent of image contrast, and, based on it, (2) the computation of skeleton points along the branch central axes, and (3) the reliable detection of branching points and of problematic regions. These are preprocessing steps to gather information which is needed by the subsequent construction of a graph representing the geometry of the neuron and a final surface reconstruction.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2002.800888</identifier><identifier>PMID: 18244675</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Confocal ; Exact sciences and technology ; Image analysis ; Image contrast ; Image edge detection ; Image segmentation ; Information geometry ; Information, signal and communications theory ; Microscopy ; Neurons ; Object detection ; Pattern recognition ; Preprocessing ; Segmentation ; Signal processing ; Skeleton ; Surface morphology ; Telecommunications and information theory ; Wavelet transforms</subject><ispartof>IEEE transactions on image processing, 2002-07, Vol.11 (7), p.790-801</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-f72045eaa9c88f1afa093a8e86681d3b9a7962e9f71d7841024ffee97819bccb3</citedby><cites>FETCH-LOGICAL-c532t-f72045eaa9c88f1afa093a8e86681d3b9a7962e9f71d7841024ffee97819bccb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1021085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1021085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13824607$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dima, A.</creatorcontrib><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Obermayer, K.</creatorcontrib><title>Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>We focus on methods for the preprocessing of neurons from three-dimensional (3-D) confocal microscopy images, which are needed for a subsequent detailed morphologic analysis. Due to the specific image properties of confocal microscopy scans, we had to include several heuristic approaches which are based on multiscale edges to guarantee meaningful results: (1) a reliable segmentation of objects of different sizes independent of image contrast, and, based on it, (2) the computation of skeleton points along the branch central axes, and (3) the reliable detection of branching points and of problematic regions. These are preprocessing steps to gather information which is needed by the subsequent construction of a graph representing the geometry of the neuron and a final surface reconstruction.</description><subject>Applied sciences</subject><subject>Confocal</subject><subject>Exact sciences and technology</subject><subject>Image analysis</subject><subject>Image contrast</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Information geometry</subject><subject>Information, signal and communications theory</subject><subject>Microscopy</subject><subject>Neurons</subject><subject>Object detection</subject><subject>Pattern recognition</subject><subject>Preprocessing</subject><subject>Segmentation</subject><subject>Signal processing</subject><subject>Skeleton</subject><subject>Surface morphology</subject><subject>Telecommunications and information theory</subject><subject>Wavelet transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0s9rFTEQB_BFFFurZw-CBMHqZV8zSTY_jqVWLRT0UM9LNjupW98mz2RXrX-9WfZBxUM9ZQifTMLkW1XPgW4AqDm5uvi8YZSyjaZUa_2gOgQjoKZUsIelpo2qFQhzUD3J-YZSEA3Ix9UBaCaEVM1h9et0nuJop8GRjNcjhqnUMRAbepK_4RanGIbf6170JOCcYsjEpzgSF4OPzm7JOLgUs4u7WzKM9hoz6WzGnpQz01ckvH5HftofSzMyJRuyj2l8Wj3ydpvx2X49qr68P786-1hffvpwcXZ6WbuGs6n2ilHRoLXGae3BeksNtxq1lBp63hmrjGRovIJeaQGUCe8RjdJgOuc6flS9WfvuUvw-Y57accgOt1sbMM65VZw33DQNK_L4Xsm0ZKLQ_0OljJBcFvj2XghSAZeCc1Xoq3_oTZxTKJNptRZcgwYo6GRFy7hzQt_uUhl4um2Btkse2pKHdslDu-ahnHi5bzt3I_Z3fh-AAl7vgc3lK335HjfkO8cLlHR534vVDYj417UMqG74H2F9xlw</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Dima, A.</creator><creator>Scholz, M.</creator><creator>Obermayer, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20020701</creationdate><title>Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform</title><author>Dima, A. ; Scholz, M. ; Obermayer, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-f72045eaa9c88f1afa093a8e86681d3b9a7962e9f71d7841024ffee97819bccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Confocal</topic><topic>Exact sciences and technology</topic><topic>Image analysis</topic><topic>Image contrast</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Information geometry</topic><topic>Information, signal and communications theory</topic><topic>Microscopy</topic><topic>Neurons</topic><topic>Object detection</topic><topic>Pattern recognition</topic><topic>Preprocessing</topic><topic>Segmentation</topic><topic>Signal processing</topic><topic>Skeleton</topic><topic>Surface morphology</topic><topic>Telecommunications and information theory</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dima, A.</creatorcontrib><creatorcontrib>Scholz, M.</creatorcontrib><creatorcontrib>Obermayer, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dima, A.</au><au>Scholz, M.</au><au>Obermayer, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>11</volume><issue>7</issue><spage>790</spage><epage>801</epage><pages>790-801</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>We focus on methods for the preprocessing of neurons from three-dimensional (3-D) confocal microscopy images, which are needed for a subsequent detailed morphologic analysis. Due to the specific image properties of confocal microscopy scans, we had to include several heuristic approaches which are based on multiscale edges to guarantee meaningful results: (1) a reliable segmentation of objects of different sizes independent of image contrast, and, based on it, (2) the computation of skeleton points along the branch central axes, and (3) the reliable detection of branching points and of problematic regions. These are preprocessing steps to gather information which is needed by the subsequent construction of a graph representing the geometry of the neuron and a final surface reconstruction.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18244675</pmid><doi>10.1109/TIP.2002.800888</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2002-07, Vol.11 (7), p.790-801 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_13824607 |
source | IEEE Xplore |
subjects | Applied sciences Confocal Exact sciences and technology Image analysis Image contrast Image edge detection Image segmentation Information geometry Information, signal and communications theory Microscopy Neurons Object detection Pattern recognition Preprocessing Segmentation Signal processing Skeleton Surface morphology Telecommunications and information theory Wavelet transforms |
title | Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20segmentation%20and%20skeletonization%20of%20neurons%20from%20confocal%20microscopy%20images%20based%20on%20the%203-D%20wavelet%20transform&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Dima,%20A.&rft.date=2002-07-01&rft.volume=11&rft.issue=7&rft.spage=790&rft.epage=801&rft.pages=790-801&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2002.800888&rft_dat=%3Cproquest_RIE%3E28624395%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884381811&rft_id=info:pmid/18244675&rft_ieee_id=1021085&rfr_iscdi=true |