Neural ARX Models and PAC Learning
The PAC learning theory creates a framework to assess the learning properties of models such as the required size of the training samples and the similarity between the training and training performances. These properties, along with stochastic stability, form the main characteristics of a typical d...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 315 |
---|---|
container_issue | |
container_start_page | 305 |
container_title | |
container_volume | 1822 |
creator | Hamilton, Howard J |
description | The PAC learning theory creates a framework to assess the learning properties of models such as the required size of the training samples and the similarity between the training and training performances. These properties, along with stochastic stability, form the main characteristics of a typical dynamic ARX modeling using neural networks. In this paper, an extension of PAC learning theory is defined which includes ARX modeling tasks, and then based on the new learning theory the learning properties of a family of neural ARX models are evaluated. The issue of stochastic stability of such networks is also addressed. Finally, using the obtained results, a cost function is proposed that considers the learning properties as well as the stochastic stability of a sigmoid neural network and creates a balance between the testing and training performances. |
doi_str_mv | 10.1007/3-540-45486-1_25 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1381182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072099_31_316</sourcerecordid><originalsourceid>FETCH-LOGICAL-p267t-a5a550f86100734b0077b8b22129fffda77871717b06f6dd75465b29aff30f8e3</originalsourceid><addsrcrecordid>eNotUEtPwzAMDk9Rxu4cK8S1I4nzPE4TL2k8hEDiFqVtMgalLUl34N-TjtmWLdn-_PgQOid4RjCWV1BwhgvGmRIFMZTvoamWClJymyP7KCOCkAKA6QN0OhaE5FyyQ5RhwLTQksExyjRXnALR9ARNY_zESYBiJWSGLh7dJtgmn7-85w9d7ZqY27bOn-eLfOlsaNft6gwdedtEN93FCXq7uX5d3BXLp9v7xXxZ9FTIobDcco59OiudDqxMXpaqpJRQ7b2vrZRKkqQlFl7UteRM8JJq6z0kmIMJuvyf29tY2cYH21braPqw_rbh1xBQhCia2mb_bTFV2pULpuy6r2gINuNmAybRYLYEmZG0BIDd3ND9bFwcjBsRlWuH9Hn1YfvBhWgAS4q1NkCSCfgDk5dmDQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072099_31_316</pqid></control><display><type>book_chapter</type><title>Neural ARX Models and PAC Learning</title><source>Springer Books</source><creator>Hamilton, Howard J</creator><contributor>Hamilton, Howard J.</contributor><creatorcontrib>Hamilton, Howard J ; Hamilton, Howard J.</creatorcontrib><description>The PAC learning theory creates a framework to assess the learning properties of models such as the required size of the training samples and the similarity between the training and training performances. These properties, along with stochastic stability, form the main characteristics of a typical dynamic ARX modeling using neural networks. In this paper, an extension of PAC learning theory is defined which includes ARX modeling tasks, and then based on the new learning theory the learning properties of a family of neural ARX models are evaluated. The issue of stochastic stability of such networks is also addressed. Finally, using the obtained results, a cost function is proposed that considers the learning properties as well as the stochastic stability of a sigmoid neural network and creates a balance between the testing and training performances.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540675574</identifier><identifier>ISBN: 9783540675570</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540454861</identifier><identifier>EISBN: 3540454861</identifier><identifier>DOI: 10.1007/3-540-45486-1_25</identifier><identifier>OCLC: 958523192</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Evolutionary Programming ; Exact sciences and technology ; Learning Theory ; Neural Networks ; Nonlinear ARX Models</subject><ispartof>Advances in Artificial Intelligence, 2000, Vol.1822, p.305-315</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072099-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45486-1_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45486-1_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1381182$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Hamilton, Howard J.</contributor><creatorcontrib>Hamilton, Howard J</creatorcontrib><title>Neural ARX Models and PAC Learning</title><title>Advances in Artificial Intelligence</title><description>The PAC learning theory creates a framework to assess the learning properties of models such as the required size of the training samples and the similarity between the training and training performances. These properties, along with stochastic stability, form the main characteristics of a typical dynamic ARX modeling using neural networks. In this paper, an extension of PAC learning theory is defined which includes ARX modeling tasks, and then based on the new learning theory the learning properties of a family of neural ARX models are evaluated. The issue of stochastic stability of such networks is also addressed. Finally, using the obtained results, a cost function is proposed that considers the learning properties as well as the stochastic stability of a sigmoid neural network and creates a balance between the testing and training performances.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Evolutionary Programming</subject><subject>Exact sciences and technology</subject><subject>Learning Theory</subject><subject>Neural Networks</subject><subject>Nonlinear ARX Models</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540675574</isbn><isbn>9783540675570</isbn><isbn>9783540454861</isbn><isbn>3540454861</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2000</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUEtPwzAMDk9Rxu4cK8S1I4nzPE4TL2k8hEDiFqVtMgalLUl34N-TjtmWLdn-_PgQOid4RjCWV1BwhgvGmRIFMZTvoamWClJymyP7KCOCkAKA6QN0OhaE5FyyQ5RhwLTQksExyjRXnALR9ARNY_zESYBiJWSGLh7dJtgmn7-85w9d7ZqY27bOn-eLfOlsaNft6gwdedtEN93FCXq7uX5d3BXLp9v7xXxZ9FTIobDcco59OiudDqxMXpaqpJRQ7b2vrZRKkqQlFl7UteRM8JJq6z0kmIMJuvyf29tY2cYH21braPqw_rbh1xBQhCia2mb_bTFV2pULpuy6r2gINuNmAybRYLYEmZG0BIDd3ND9bFwcjBsRlWuH9Hn1YfvBhWgAS4q1NkCSCfgDk5dmDQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Hamilton, Howard J</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2000</creationdate><title>Neural ARX Models and PAC Learning</title><author>Hamilton, Howard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p267t-a5a550f86100734b0077b8b22129fffda77871717b06f6dd75465b29aff30f8e3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Evolutionary Programming</topic><topic>Exact sciences and technology</topic><topic>Learning Theory</topic><topic>Neural Networks</topic><topic>Nonlinear ARX Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, Howard J</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, Howard J</au><au>Hamilton, Howard J.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Neural ARX Models and PAC Learning</atitle><btitle>Advances in Artificial Intelligence</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2000</date><risdate>2000</risdate><volume>1822</volume><spage>305</spage><epage>315</epage><pages>305-315</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540675574</isbn><isbn>9783540675570</isbn><eisbn>9783540454861</eisbn><eisbn>3540454861</eisbn><abstract>The PAC learning theory creates a framework to assess the learning properties of models such as the required size of the training samples and the similarity between the training and training performances. These properties, along with stochastic stability, form the main characteristics of a typical dynamic ARX modeling using neural networks. In this paper, an extension of PAC learning theory is defined which includes ARX modeling tasks, and then based on the new learning theory the learning properties of a family of neural ARX models are evaluated. The issue of stochastic stability of such networks is also addressed. Finally, using the obtained results, a cost function is proposed that considers the learning properties as well as the stochastic stability of a sigmoid neural network and creates a balance between the testing and training performances.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45486-1_25</doi><oclcid>958523192</oclcid><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Artificial Intelligence, 2000, Vol.1822, p.305-315 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1381182 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Evolutionary Programming Exact sciences and technology Learning Theory Neural Networks Nonlinear ARX Models |
title | Neural ARX Models and PAC Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Neural%20ARX%20Models%20and%20PAC%20Learning&rft.btitle=Advances%20in%20Artificial%20Intelligence&rft.au=Hamilton,%20Howard%20J&rft.date=2000&rft.volume=1822&rft.spage=305&rft.epage=315&rft.pages=305-315&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540675574&rft.isbn_list=9783540675570&rft_id=info:doi/10.1007/3-540-45486-1_25&rft_dat=%3Cproquest_pasca%3EEBC3072099_31_316%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540454861&rft.eisbn_list=3540454861&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072099_31_316&rft_id=info:pmid/&rfr_iscdi=true |