Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices

In this paper we introduce a new technique to solve lattice problems. The technique is based on dual HKZ-bases. Using this technique we show how to solve the closest vector problem in lattices with rank n in time n! · sO(1), where s is the input size of the problem. This is an exponential improvemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Blömer, Johannes
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue
container_start_page 248
container_title
container_volume 1853
creator Blömer, Johannes
description In this paper we introduce a new technique to solve lattice problems. The technique is based on dual HKZ-bases. Using this technique we show how to solve the closest vector problem in lattices with rank n in time n! · sO(1), where s is the input size of the problem. This is an exponential improvement over an algorithm due to Kannan and Helfrich [16,15]. Based on the new technique we also show how to compute the successive minima of a lattice in time n! · 3n · sO(1), where n is the rank of the lattice and s is the input size of the lattice. The problem of computing the successive minima plays an important role in Ajtai’s worst-case to average-case reduction for lattice problems. Our results reveal a close connection between the closest vector problem and the problem of computing the successive minima of a lattice.
doi_str_mv 10.1007/3-540-45022-X_22
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1380712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072415_28_265</sourcerecordid><originalsourceid>FETCH-LOGICAL-p267t-8a099a72f9b8f0e4b1350c5b04e470efa5800fde945ed4d87dcde99b99846c0a3</originalsourceid><addsrcrecordid>eNotkElPwzAQhc0qSumdYw4c6zLeYvtIy1JEEQcWVVwsx3EgEJIQp0j8e1zauYxm5r2n0YfQKYEJAZDnDAsOmAugFC8NpTvomMXN_2K5iwYkJQQzxvXe5pBKSQTZRwNgQLGWnB2igRZKUMYlOUKjED4gFqOE63SAprOqCT70yYt3fdOFcfK4cs6HUP745L6syy87TmydJ5crWyXzu1c8tVGfNEWysH1fRukJOihsFfxo24fo-frqaTbHi4eb29nFArc0lT1WFrS2khY6UwV4nhEmwIkMuOcSfGGFAihyr7nwOc-VzF0cdKa14qkDy4bobJPb2uBsVXS2dmUwbRd_7H4NYQokoVE22chCvNRvvjNZ03wGQ8CsiRpmIibzD9CsiUYD2-Z2zfcqsjB-7XC-7jtbuXfb9r4LhoGknAhDlaGpYH-u03KU</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072415_28_265</pqid></control><display><type>book_chapter</type><title>Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices</title><source>Springer Books</source><creator>Blömer, Johannes</creator><contributor>Montanari, Ugo ; Welzl, Emo ; Rolim, Jose D. P ; Montanari, Ugo ; Welzl, Emo ; Rolim, José D. P.</contributor><creatorcontrib>Blömer, Johannes ; Montanari, Ugo ; Welzl, Emo ; Rolim, Jose D. P ; Montanari, Ugo ; Welzl, Emo ; Rolim, José D. P.</creatorcontrib><description>In this paper we introduce a new technique to solve lattice problems. The technique is based on dual HKZ-bases. Using this technique we show how to solve the closest vector problem in lattices with rank n in time n! · sO(1), where s is the input size of the problem. This is an exponential improvement over an algorithm due to Kannan and Helfrich [16,15]. Based on the new technique we also show how to compute the successive minima of a lattice in time n! · 3n · sO(1), where n is the rank of the lattice and s is the input size of the lattice. The problem of computing the successive minima plays an important role in Ajtai’s worst-case to average-case reduction for lattice problems. Our results reveal a close connection between the closest vector problem and the problem of computing the successive minima of a lattice.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540677151</identifier><identifier>ISBN: 9783540677154</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354045022X</identifier><identifier>EISBN: 9783540450221</identifier><identifier>DOI: 10.1007/3-540-45022-X_22</identifier><identifier>OCLC: 958523471</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Theoretical computing</subject><ispartof>Automata, Languages and Programming, 2000, Vol.1853, p.248-259</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072415-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45022-X_22$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45022-X_22$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4040,4041,27916,38246,41433,42502</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1380712$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Montanari, Ugo</contributor><contributor>Welzl, Emo</contributor><contributor>Rolim, Jose D. P</contributor><contributor>Montanari, Ugo</contributor><contributor>Welzl, Emo</contributor><contributor>Rolim, José D. P.</contributor><creatorcontrib>Blömer, Johannes</creatorcontrib><title>Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices</title><title>Automata, Languages and Programming</title><description>In this paper we introduce a new technique to solve lattice problems. The technique is based on dual HKZ-bases. Using this technique we show how to solve the closest vector problem in lattices with rank n in time n! · sO(1), where s is the input size of the problem. This is an exponential improvement over an algorithm due to Kannan and Helfrich [16,15]. Based on the new technique we also show how to compute the successive minima of a lattice in time n! · 3n · sO(1), where n is the rank of the lattice and s is the input size of the lattice. The problem of computing the successive minima plays an important role in Ajtai’s worst-case to average-case reduction for lattice problems. Our results reveal a close connection between the closest vector problem and the problem of computing the successive minima of a lattice.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540677151</isbn><isbn>9783540677154</isbn><isbn>354045022X</isbn><isbn>9783540450221</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2000</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkElPwzAQhc0qSumdYw4c6zLeYvtIy1JEEQcWVVwsx3EgEJIQp0j8e1zauYxm5r2n0YfQKYEJAZDnDAsOmAugFC8NpTvomMXN_2K5iwYkJQQzxvXe5pBKSQTZRwNgQLGWnB2igRZKUMYlOUKjED4gFqOE63SAprOqCT70yYt3fdOFcfK4cs6HUP745L6syy87TmydJ5crWyXzu1c8tVGfNEWysH1fRukJOihsFfxo24fo-frqaTbHi4eb29nFArc0lT1WFrS2khY6UwV4nhEmwIkMuOcSfGGFAihyr7nwOc-VzF0cdKa14qkDy4bobJPb2uBsVXS2dmUwbRd_7H4NYQokoVE22chCvNRvvjNZ03wGQ8CsiRpmIibzD9CsiUYD2-Z2zfcqsjB-7XC-7jtbuXfb9r4LhoGknAhDlaGpYH-u03KU</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Blömer, Johannes</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2000</creationdate><title>Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices</title><author>Blömer, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p267t-8a099a72f9b8f0e4b1350c5b04e470efa5800fde945ed4d87dcde99b99846c0a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blömer, Johannes</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blömer, Johannes</au><au>Montanari, Ugo</au><au>Welzl, Emo</au><au>Rolim, Jose D. P</au><au>Montanari, Ugo</au><au>Welzl, Emo</au><au>Rolim, José D. P.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices</atitle><btitle>Automata, Languages and Programming</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2000</date><risdate>2000</risdate><volume>1853</volume><spage>248</spage><epage>259</epage><pages>248-259</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540677151</isbn><isbn>9783540677154</isbn><eisbn>354045022X</eisbn><eisbn>9783540450221</eisbn><abstract>In this paper we introduce a new technique to solve lattice problems. The technique is based on dual HKZ-bases. Using this technique we show how to solve the closest vector problem in lattices with rank n in time n! · sO(1), where s is the input size of the problem. This is an exponential improvement over an algorithm due to Kannan and Helfrich [16,15]. Based on the new technique we also show how to compute the successive minima of a lattice in time n! · 3n · sO(1), where n is the rank of the lattice and s is the input size of the lattice. The problem of computing the successive minima plays an important role in Ajtai’s worst-case to average-case reduction for lattice problems. Our results reveal a close connection between the closest vector problem and the problem of computing the successive minima of a lattice.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45022-X_22</doi><oclcid>958523471</oclcid><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Automata, Languages and Programming, 2000, Vol.1853, p.248-259
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1380712
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Information retrieval. Graph
Theoretical computing
title Closest Vectors, Successive Minima, and Dual HKZ-Bases of Lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Closest%20Vectors,%20Successive%20Minima,%20and%20Dual%20HKZ-Bases%20of%20Lattices&rft.btitle=Automata,%20Languages%20and%20Programming&rft.au=Bl%C3%B6mer,%20Johannes&rft.date=2000&rft.volume=1853&rft.spage=248&rft.epage=259&rft.pages=248-259&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540677151&rft.isbn_list=9783540677154&rft_id=info:doi/10.1007/3-540-45022-X_22&rft_dat=%3Cproquest_pasca%3EEBC3072415_28_265%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=354045022X&rft.eisbn_list=9783540450221&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072415_28_265&rft_id=info:pmid/&rfr_iscdi=true