Asymptotic expansions and the reliability of tests in accelerated failure time models

This paper gives matrix formilae for the O(n -1 ) cerrecti0n applicable to asymptotically efficient conditional moment tests. These formulae only require expectations of functions involving, at most, second order derivatives of the log-likelihood; unlike those previously providcd by Ferrari and Cord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical computation and simulation 2000-01, Vol.65 (1-4), p.109-132
Hauptverfasser: Orme, Chris D., Peters, Simon A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 1-4
container_start_page 109
container_title Journal of statistical computation and simulation
container_volume 65
creator Orme, Chris D.
Peters, Simon A
description This paper gives matrix formilae for the O(n -1 ) cerrecti0n applicable to asymptotically efficient conditional moment tests. These formulae only require expectations of functions involving, at most, second order derivatives of the log-likelihood; unlike those previously providcd by Ferrari and Corddro(1994). The correction is used to assess the reliability of first order asymptotic theory for arbitrary residual-based diagnostics in a class of accelerated failure time models: this correction is always parameter free, depending only on the number of included covariates in the regression design. For all but one of the tests considered, first order theory is found to be extremely unreliable, even in quite large samples, although this may not be widely appreciated by applied workers.
doi_str_mv 10.1080/00949650008811993
format Article
fullrecord <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_1341705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1341705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-30f4db73efa92b5fe3cd7b1d93de377965971223374c355cc65cb9f66654fc553</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWKs_wF0WbkeTeZNJA25K0SoU3Nj1kMkHRjKTIYnY-fdOqeKiiKu3eOdcLheha0puKVmQO0JEJWpGCFksKBUCTtCMshoKRms4RbP9v5gAdo4uUnqfOEpZOUPbZRq7IYfsFDa7QfbJhT5h2Wuc3wyOxjvZOu_yiIPF2aScsOuxVMp4E2U2Glvp_Ec0OLvO4C5o49MlOrPSJ3P1fedo-_jwunoqNi_r59VyUyjgkAsgttItB2OlKFtmDSjNW6oFaAOcT3UFp2UJwCsFjClVM9UKW9c1q6xiDOaIHnJVDClFY5shuk7GsaGk2e_SHO0yOTcHZ5BJSW-j7JVLvyJUlJN9ND9grrchdvIzRK-bLEcf4o9zFN7kXZ7M-39N-LvfF_HuiGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptotic expansions and the reliability of tests in accelerated failure time models</title><source>Taylor &amp; Francis Journals Complete</source><creator>Orme, Chris D. ; Peters, Simon A</creator><creatorcontrib>Orme, Chris D. ; Peters, Simon A</creatorcontrib><description>This paper gives matrix formilae for the O(n -1 ) cerrecti0n applicable to asymptotically efficient conditional moment tests. These formulae only require expectations of functions involving, at most, second order derivatives of the log-likelihood; unlike those previously providcd by Ferrari and Corddro(1994). The correction is used to assess the reliability of first order asymptotic theory for arbitrary residual-based diagnostics in a class of accelerated failure time models: this correction is always parameter free, depending only on the number of included covariates in the regression design. For all but one of the tests considered, first order theory is found to be extremely unreliable, even in quite large samples, although this may not be widely appreciated by applied workers.</description><identifier>ISSN: 0094-9655</identifier><identifier>EISSN: 1563-5163</identifier><identifier>DOI: 10.1080/00949650008811993</identifier><identifier>CODEN: JSCSAJ</identifier><language>eng</language><publisher>Abingdon: Gordon and Breach Science Publishers</publisher><subject>accelerated failure time models ; Asymptotic expansions ; conditional moment tests ; Distribution theory ; Exact sciences and technology ; Mathematics ; Parametric inference ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Journal of statistical computation and simulation, 2000-01, Vol.65 (1-4), p.109-132</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-30f4db73efa92b5fe3cd7b1d93de377965971223374c355cc65cb9f66654fc553</citedby><cites>FETCH-LOGICAL-c373t-30f4db73efa92b5fe3cd7b1d93de377965971223374c355cc65cb9f66654fc553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00949650008811993$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00949650008811993$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1341705$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Orme, Chris D.</creatorcontrib><creatorcontrib>Peters, Simon A</creatorcontrib><title>Asymptotic expansions and the reliability of tests in accelerated failure time models</title><title>Journal of statistical computation and simulation</title><description>This paper gives matrix formilae for the O(n -1 ) cerrecti0n applicable to asymptotically efficient conditional moment tests. These formulae only require expectations of functions involving, at most, second order derivatives of the log-likelihood; unlike those previously providcd by Ferrari and Corddro(1994). The correction is used to assess the reliability of first order asymptotic theory for arbitrary residual-based diagnostics in a class of accelerated failure time models: this correction is always parameter free, depending only on the number of included covariates in the regression design. For all but one of the tests considered, first order theory is found to be extremely unreliable, even in quite large samples, although this may not be widely appreciated by applied workers.</description><subject>accelerated failure time models</subject><subject>Asymptotic expansions</subject><subject>conditional moment tests</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0094-9655</issn><issn>1563-5163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEURYMoWKs_wF0WbkeTeZNJA25K0SoU3Nj1kMkHRjKTIYnY-fdOqeKiiKu3eOdcLheha0puKVmQO0JEJWpGCFksKBUCTtCMshoKRms4RbP9v5gAdo4uUnqfOEpZOUPbZRq7IYfsFDa7QfbJhT5h2Wuc3wyOxjvZOu_yiIPF2aScsOuxVMp4E2U2Glvp_Ec0OLvO4C5o49MlOrPSJ3P1fedo-_jwunoqNi_r59VyUyjgkAsgttItB2OlKFtmDSjNW6oFaAOcT3UFp2UJwCsFjClVM9UKW9c1q6xiDOaIHnJVDClFY5shuk7GsaGk2e_SHO0yOTcHZ5BJSW-j7JVLvyJUlJN9ND9grrchdvIzRK-bLEcf4o9zFN7kXZ7M-39N-LvfF_HuiGU</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Orme, Chris D.</creator><creator>Peters, Simon A</creator><general>Gordon and Breach Science Publishers</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000101</creationdate><title>Asymptotic expansions and the reliability of tests in accelerated failure time models</title><author>Orme, Chris D. ; Peters, Simon A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-30f4db73efa92b5fe3cd7b1d93de377965971223374c355cc65cb9f66654fc553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>accelerated failure time models</topic><topic>Asymptotic expansions</topic><topic>conditional moment tests</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orme, Chris D.</creatorcontrib><creatorcontrib>Peters, Simon A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of statistical computation and simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orme, Chris D.</au><au>Peters, Simon A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic expansions and the reliability of tests in accelerated failure time models</atitle><jtitle>Journal of statistical computation and simulation</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>65</volume><issue>1-4</issue><spage>109</spage><epage>132</epage><pages>109-132</pages><issn>0094-9655</issn><eissn>1563-5163</eissn><coden>JSCSAJ</coden><abstract>This paper gives matrix formilae for the O(n -1 ) cerrecti0n applicable to asymptotically efficient conditional moment tests. These formulae only require expectations of functions involving, at most, second order derivatives of the log-likelihood; unlike those previously providcd by Ferrari and Corddro(1994). The correction is used to assess the reliability of first order asymptotic theory for arbitrary residual-based diagnostics in a class of accelerated failure time models: this correction is always parameter free, depending only on the number of included covariates in the regression design. For all but one of the tests considered, first order theory is found to be extremely unreliable, even in quite large samples, although this may not be widely appreciated by applied workers.</abstract><cop>Abingdon</cop><pub>Gordon and Breach Science Publishers</pub><doi>10.1080/00949650008811993</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-9655
ispartof Journal of statistical computation and simulation, 2000-01, Vol.65 (1-4), p.109-132
issn 0094-9655
1563-5163
language eng
recordid cdi_pascalfrancis_primary_1341705
source Taylor & Francis Journals Complete
subjects accelerated failure time models
Asymptotic expansions
conditional moment tests
Distribution theory
Exact sciences and technology
Mathematics
Parametric inference
Probability and statistics
Sciences and techniques of general use
Statistics
title Asymptotic expansions and the reliability of tests in accelerated failure time models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20expansions%20and%20the%20reliability%20of%20tests%20in%20accelerated%20failure%20time%20models&rft.jtitle=Journal%20of%20statistical%20computation%20and%20simulation&rft.au=Orme,%20Chris%20D.&rft.date=2000-01-01&rft.volume=65&rft.issue=1-4&rft.spage=109&rft.epage=132&rft.pages=109-132&rft.issn=0094-9655&rft.eissn=1563-5163&rft.coden=JSCSAJ&rft_id=info:doi/10.1080/00949650008811993&rft_dat=%3Cpascalfrancis_infor%3E1341705%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true