A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images
Ultrasonic measurements of human carotid and femoral artery walls are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the interobserver variability and inefficiency. Here, the authors present a new automated method which reduces these pr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2000-02, Vol.19 (2), p.127-142 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | 2 |
container_start_page | 127 |
container_title | IEEE transactions on medical imaging |
container_volume | 19 |
creator | Quan Liang Wendelhag, I. Wikstrand, J. Gustavsson, T. |
description | Ultrasonic measurements of human carotid and femoral artery walls are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the interobserver variability and inefficiency. Here, the authors present a new automated method which reduces these problems. By applying a multiscale dynamic programming (DP) algorithm, approximate vessel wall positions are first estimated in a coarse-scale image, which then guide the detection of the boundaries in a fine-scale image. In both cases, DP is used for finding a global optimum for a cost function. The cost function is a weighted sum of terms, in fuzzy expression forms, representing image features and geometrical characteristics of the vessel interfaces. The weights are adjusted by a training procedure using human expert tracings. Operator interventions, if needed, also take effect under the framework of global optimality. This reduces the amount of human intervention and, hence, variability due to subjectiveness. By incorporating human knowledge and experience, the algorithm becomes more robust. A thorough evaluation of the method in the clinical environment shows that interobserver variability is evidently decreased and so is the overall analysis time. The authors conclude that the automated procedure can replace the manual procedure and leads to an improved performance. |
doi_str_mv | 10.1109/42.836372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_1330785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>836372</ieee_id><sourcerecordid>471167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-2fb955e7c6ccfb7d7745a0a0f187fa63a1b04a56bac742c2c22ff8325cd8aed63</originalsourceid><addsrcrecordid>eNqF0b1r3TAQAHARWpLXJEPWDsWE0pLBib4ljyH0IxDo0kCXYs7y6eFgy6lkD--_r4wfSejQoEEC_XR3uiPkjNFLxmh1JfmlFVoYfkA2TClbciV_vSEbyo0tKdX8iLxL6YFSJhWtDskRo8ZKbuWG_L4uhrmfuuSgx6LdBRg6VzzGcRthGLqwXc4O2zli4cdYNOMcWoi7osUJ3dSNoehCkSNESGPITyFOmK-7AbaYTshbD33C0_1-TO6_fvl58728-_Ht9ub6rnSK6ankvqmUQuO0c74xrTFSAQXqmTUetADWUAlKN-CM5C4v7r0VXLnWArZaHJPPa9xc7J8Z01QP-UfY9xBwnFNtrc19olRm-em_0uTWMC31q5BbYYSQ_HXIZFbVkvr8H_gwzjHkvuT6FBWVEiqjixW5OKYU0dePMfcy7mpG62XYteT1OuxsP-wDzs2A7Qu5TjeDj3sAy3x9hOC69OyEyHLJ-X5lHSI-3e6T_AVmLrlK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885039535</pqid></control><display><type>article</type><title>A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images</title><source>IEEE Electronic Library (IEL)</source><creator>Quan Liang ; Wendelhag, I. ; Wikstrand, J. ; Gustavsson, T.</creator><creatorcontrib>Quan Liang ; Wendelhag, I. ; Wikstrand, J. ; Gustavsson, T.</creatorcontrib><description>Ultrasonic measurements of human carotid and femoral artery walls are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the interobserver variability and inefficiency. Here, the authors present a new automated method which reduces these problems. By applying a multiscale dynamic programming (DP) algorithm, approximate vessel wall positions are first estimated in a coarse-scale image, which then guide the detection of the boundaries in a fine-scale image. In both cases, DP is used for finding a global optimum for a cost function. The cost function is a weighted sum of terms, in fuzzy expression forms, representing image features and geometrical characteristics of the vessel interfaces. The weights are adjusted by a training procedure using human expert tracings. Operator interventions, if needed, also take effect under the framework of global optimality. This reduces the amount of human intervention and, hence, variability due to subjectiveness. By incorporating human knowledge and experience, the algorithm becomes more robust. A thorough evaluation of the method in the clinical environment shows that interobserver variability is evidently decreased and so is the overall analysis time. The authors conclude that the automated procedure can replace the manual procedure and leads to an improved performance.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.836372</identifier><identifier>PMID: 10784284</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Anthropometry ; Arteries ; Biological and medical sciences ; Blood vessels ; Cardiovascular system ; Carotid Artery, Common - diagnostic imaging ; Computational geometry ; Cost function ; Costs and Cost Analysis ; Councils ; Dynamic programming ; Edge detection ; Feature extraction ; Femoral Artery - diagnostic imaging ; Fuzzy sets ; Graphical user interfaces ; Heuristic algorithms ; Humans ; Image enhancement ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Operations research ; Robustness ; Studies ; Tissue ; Ultrasonic imaging ; Ultrasonic investigative techniques ; Ultrasonic variables measurement ; Ultrasonography - methods</subject><ispartof>IEEE transactions on medical imaging, 2000-02, Vol.19 (2), p.127-142</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-2fb955e7c6ccfb7d7745a0a0f187fa63a1b04a56bac742c2c22ff8325cd8aed63</citedby><cites>FETCH-LOGICAL-c516t-2fb955e7c6ccfb7d7745a0a0f187fa63a1b04a56bac742c2c22ff8325cd8aed63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/836372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/836372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1330785$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10784284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quan Liang</creatorcontrib><creatorcontrib>Wendelhag, I.</creatorcontrib><creatorcontrib>Wikstrand, J.</creatorcontrib><creatorcontrib>Gustavsson, T.</creatorcontrib><title>A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Ultrasonic measurements of human carotid and femoral artery walls are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the interobserver variability and inefficiency. Here, the authors present a new automated method which reduces these problems. By applying a multiscale dynamic programming (DP) algorithm, approximate vessel wall positions are first estimated in a coarse-scale image, which then guide the detection of the boundaries in a fine-scale image. In both cases, DP is used for finding a global optimum for a cost function. The cost function is a weighted sum of terms, in fuzzy expression forms, representing image features and geometrical characteristics of the vessel interfaces. The weights are adjusted by a training procedure using human expert tracings. Operator interventions, if needed, also take effect under the framework of global optimality. This reduces the amount of human intervention and, hence, variability due to subjectiveness. By incorporating human knowledge and experience, the algorithm becomes more robust. A thorough evaluation of the method in the clinical environment shows that interobserver variability is evidently decreased and so is the overall analysis time. The authors conclude that the automated procedure can replace the manual procedure and leads to an improved performance.</description><subject>Algorithms</subject><subject>Anthropometry</subject><subject>Arteries</subject><subject>Biological and medical sciences</subject><subject>Blood vessels</subject><subject>Cardiovascular system</subject><subject>Carotid Artery, Common - diagnostic imaging</subject><subject>Computational geometry</subject><subject>Cost function</subject><subject>Costs and Cost Analysis</subject><subject>Councils</subject><subject>Dynamic programming</subject><subject>Edge detection</subject><subject>Feature extraction</subject><subject>Femoral Artery - diagnostic imaging</subject><subject>Fuzzy sets</subject><subject>Graphical user interfaces</subject><subject>Heuristic algorithms</subject><subject>Humans</subject><subject>Image enhancement</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Operations research</subject><subject>Robustness</subject><subject>Studies</subject><subject>Tissue</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonic variables measurement</subject><subject>Ultrasonography - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0b1r3TAQAHARWpLXJEPWDsWE0pLBib4ljyH0IxDo0kCXYs7y6eFgy6lkD--_r4wfSejQoEEC_XR3uiPkjNFLxmh1JfmlFVoYfkA2TClbciV_vSEbyo0tKdX8iLxL6YFSJhWtDskRo8ZKbuWG_L4uhrmfuuSgx6LdBRg6VzzGcRthGLqwXc4O2zli4cdYNOMcWoi7osUJ3dSNoehCkSNESGPITyFOmK-7AbaYTshbD33C0_1-TO6_fvl58728-_Ht9ub6rnSK6ankvqmUQuO0c74xrTFSAQXqmTUetADWUAlKN-CM5C4v7r0VXLnWArZaHJPPa9xc7J8Z01QP-UfY9xBwnFNtrc19olRm-em_0uTWMC31q5BbYYSQ_HXIZFbVkvr8H_gwzjHkvuT6FBWVEiqjixW5OKYU0dePMfcy7mpG62XYteT1OuxsP-wDzs2A7Qu5TjeDj3sAy3x9hOC69OyEyHLJ-X5lHSI-3e6T_AVmLrlK</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Quan Liang</creator><creator>Wendelhag, I.</creator><creator>Wikstrand, J.</creator><creator>Gustavsson, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000201</creationdate><title>A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images</title><author>Quan Liang ; Wendelhag, I. ; Wikstrand, J. ; Gustavsson, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-2fb955e7c6ccfb7d7745a0a0f187fa63a1b04a56bac742c2c22ff8325cd8aed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Anthropometry</topic><topic>Arteries</topic><topic>Biological and medical sciences</topic><topic>Blood vessels</topic><topic>Cardiovascular system</topic><topic>Carotid Artery, Common - diagnostic imaging</topic><topic>Computational geometry</topic><topic>Cost function</topic><topic>Costs and Cost Analysis</topic><topic>Councils</topic><topic>Dynamic programming</topic><topic>Edge detection</topic><topic>Feature extraction</topic><topic>Femoral Artery - diagnostic imaging</topic><topic>Fuzzy sets</topic><topic>Graphical user interfaces</topic><topic>Heuristic algorithms</topic><topic>Humans</topic><topic>Image enhancement</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Operations research</topic><topic>Robustness</topic><topic>Studies</topic><topic>Tissue</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonic variables measurement</topic><topic>Ultrasonography - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Quan Liang</creatorcontrib><creatorcontrib>Wendelhag, I.</creatorcontrib><creatorcontrib>Wikstrand, J.</creatorcontrib><creatorcontrib>Gustavsson, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Quan Liang</au><au>Wendelhag, I.</au><au>Wikstrand, J.</au><au>Gustavsson, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2000-02-01</date><risdate>2000</risdate><volume>19</volume><issue>2</issue><spage>127</spage><epage>142</epage><pages>127-142</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Ultrasonic measurements of human carotid and femoral artery walls are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the interobserver variability and inefficiency. Here, the authors present a new automated method which reduces these problems. By applying a multiscale dynamic programming (DP) algorithm, approximate vessel wall positions are first estimated in a coarse-scale image, which then guide the detection of the boundaries in a fine-scale image. In both cases, DP is used for finding a global optimum for a cost function. The cost function is a weighted sum of terms, in fuzzy expression forms, representing image features and geometrical characteristics of the vessel interfaces. The weights are adjusted by a training procedure using human expert tracings. Operator interventions, if needed, also take effect under the framework of global optimality. This reduces the amount of human intervention and, hence, variability due to subjectiveness. By incorporating human knowledge and experience, the algorithm becomes more robust. A thorough evaluation of the method in the clinical environment shows that interobserver variability is evidently decreased and so is the overall analysis time. The authors conclude that the automated procedure can replace the manual procedure and leads to an improved performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>10784284</pmid><doi>10.1109/42.836372</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2000-02, Vol.19 (2), p.127-142 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_pascalfrancis_primary_1330785 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anthropometry Arteries Biological and medical sciences Blood vessels Cardiovascular system Carotid Artery, Common - diagnostic imaging Computational geometry Cost function Costs and Cost Analysis Councils Dynamic programming Edge detection Feature extraction Femoral Artery - diagnostic imaging Fuzzy sets Graphical user interfaces Heuristic algorithms Humans Image enhancement Image Processing, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) Medical sciences Operations research Robustness Studies Tissue Ultrasonic imaging Ultrasonic investigative techniques Ultrasonic variables measurement Ultrasonography - methods |
title | A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiscale%20dynamic%20programming%20procedure%20for%20boundary%20detection%20in%20ultrasonic%20artery%20images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Quan%20Liang&rft.date=2000-02-01&rft.volume=19&rft.issue=2&rft.spage=127&rft.epage=142&rft.pages=127-142&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.836372&rft_dat=%3Cproquest_RIE%3E471167%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885039535&rft_id=info:pmid/10784284&rft_ieee_id=836372&rfr_iscdi=true |