Mass Transfer of Diffusive Species with Nonconstant In-Flight Formation and Removal in Laminar Tube Flow. Application to Unattached Short-Lived Radon Daughters

This article deals with convective-diffusive aerosol transport with in-flight formation and removal and is applied to the unattached fraction of short-lived radon decay products. Two novel contributions to previous studies are given in this numerical and experimental work: on the one hand, we solve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerosol science and technology 2000-03, Vol.32 (3), p.168-183
Hauptverfasser: Malet, J., Michielsen, N., Boulaud, D., Renoux, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 3
container_start_page 168
container_title Aerosol science and technology
container_volume 32
creator Malet, J.
Michielsen, N.
Boulaud, D.
Renoux, A.
description This article deals with convective-diffusive aerosol transport with in-flight formation and removal and is applied to the unattached fraction of short-lived radon decay products. Two novel contributions to previous studies are given in this numerical and experimental work: on the one hand, we solve the mass-transport equations for all the short-lived radon daughters; on the other hand, we include the 218 Po neutralization into the mass-transport equation of the first radon decay product. Concerning the mass-transfer of all short-lived radon daughters, numerical calculations lead to the development of simple correlations for the 214 Pb and 214 Bi penetration fractions. Those correlations can be used to determine the diffusion coefficient of 214 Pb and 214 Bi using the 2-filter method. In our experiments, a diffusion coefficient equal to 5 X 10 -6 m 2 s -1 is found for the 214 Pb. Concerning the 218 Po neutralization, better agreement is observed between our numerical and experimental results when 218 Po neutralization is taken into account. These results confirm the neutralization rates found by Howard and Strange (1994).
doi_str_mv 10.1080/027868200303713
format Article
fullrecord <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1299292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_irsn_04058878v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-b7e0f4ae383fac471bb3fdb0c50c8412b1b303a57c69fcbb08fd194f1a70a2b23</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEEkvhzNUHTkhp7ThZO9xWLUsrhVZqt-do7NjEyGtHtneX_hr-ar1KAalSxWkO731vRm-K4iPBpwRzfIYrxpe8wphiygh9VSxIU5GSUc5fF4ujWmZ5-bZ4F-NPjDFhFVkUv79DjGgTwEWtAvIaXRitd9HsFbqblDQqooNJI7r2TnoXE7iErly5tubHmNDahy0k4x0CN6BbtfV7sMg41MHWOAhosxMKra0_nKLVNFkjZ3fy6N5BSiBHNaC70YdUdnlnzoAh6xewy_EqxPfFGw02qg9P86S4X3_dnF-W3c23q_NVV8q6JqkUTGFdg6KcapA1I0JQPQgsGyx5TSpBRK4FGiaXrZZCYK4H0taaAMNQiYqeFJ_n3BFsPwWzhfDQezD95arrTYiuxzVuOGd8T7L5bDbL4GMMSv8lCO6Pz-ifPSMTn2ZigijB6ty3NPEfVrVt1R6vaGabcfrY7MEHO_QJHqwPf5hn0X36lTL35b8cfem2R3swr5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mass Transfer of Diffusive Species with Nonconstant In-Flight Formation and Removal in Laminar Tube Flow. Application to Unattached Short-Lived Radon Daughters</title><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Malet, J. ; Michielsen, N. ; Boulaud, D. ; Renoux, A.</creator><creatorcontrib>Malet, J. ; Michielsen, N. ; Boulaud, D. ; Renoux, A.</creatorcontrib><description>This article deals with convective-diffusive aerosol transport with in-flight formation and removal and is applied to the unattached fraction of short-lived radon decay products. Two novel contributions to previous studies are given in this numerical and experimental work: on the one hand, we solve the mass-transport equations for all the short-lived radon daughters; on the other hand, we include the 218 Po neutralization into the mass-transport equation of the first radon decay product. Concerning the mass-transfer of all short-lived radon daughters, numerical calculations lead to the development of simple correlations for the 214 Pb and 214 Bi penetration fractions. Those correlations can be used to determine the diffusion coefficient of 214 Pb and 214 Bi using the 2-filter method. In our experiments, a diffusion coefficient equal to 5 X 10 -6 m 2 s -1 is found for the 214 Pb. Concerning the 218 Po neutralization, better agreement is observed between our numerical and experimental results when 218 Po neutralization is taken into account. These results confirm the neutralization rates found by Howard and Strange (1994).</description><identifier>ISSN: 0278-6826</identifier><identifier>EISSN: 1521-7388</identifier><identifier>DOI: 10.1080/027868200303713</identifier><identifier>CODEN: ASTYDQ</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Aerosols ; Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; Fluid mechanics ; General and physical chemistry ; Mechanics ; Physics</subject><ispartof>Aerosol science and technology, 2000-03, Vol.32 (3), p.168-183</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2000</rights><rights>2000 INIST-CNRS</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-b7e0f4ae383fac471bb3fdb0c50c8412b1b303a57c69fcbb08fd194f1a70a2b23</citedby><orcidid>0000-0002-5853-1694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1299292$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://irsn.hal.science/irsn-04058878$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Malet, J.</creatorcontrib><creatorcontrib>Michielsen, N.</creatorcontrib><creatorcontrib>Boulaud, D.</creatorcontrib><creatorcontrib>Renoux, A.</creatorcontrib><title>Mass Transfer of Diffusive Species with Nonconstant In-Flight Formation and Removal in Laminar Tube Flow. Application to Unattached Short-Lived Radon Daughters</title><title>Aerosol science and technology</title><description>This article deals with convective-diffusive aerosol transport with in-flight formation and removal and is applied to the unattached fraction of short-lived radon decay products. Two novel contributions to previous studies are given in this numerical and experimental work: on the one hand, we solve the mass-transport equations for all the short-lived radon daughters; on the other hand, we include the 218 Po neutralization into the mass-transport equation of the first radon decay product. Concerning the mass-transfer of all short-lived radon daughters, numerical calculations lead to the development of simple correlations for the 214 Pb and 214 Bi penetration fractions. Those correlations can be used to determine the diffusion coefficient of 214 Pb and 214 Bi using the 2-filter method. In our experiments, a diffusion coefficient equal to 5 X 10 -6 m 2 s -1 is found for the 214 Pb. Concerning the 218 Po neutralization, better agreement is observed between our numerical and experimental results when 218 Po neutralization is taken into account. These results confirm the neutralization rates found by Howard and Strange (1994).</description><subject>Aerosols</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>General and physical chemistry</subject><subject>Mechanics</subject><subject>Physics</subject><issn>0278-6826</issn><issn>1521-7388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhSMEEkvhzNUHTkhp7ThZO9xWLUsrhVZqt-do7NjEyGtHtneX_hr-ar1KAalSxWkO731vRm-K4iPBpwRzfIYrxpe8wphiygh9VSxIU5GSUc5fF4ujWmZ5-bZ4F-NPjDFhFVkUv79DjGgTwEWtAvIaXRitd9HsFbqblDQqooNJI7r2TnoXE7iErly5tubHmNDahy0k4x0CN6BbtfV7sMg41MHWOAhosxMKra0_nKLVNFkjZ3fy6N5BSiBHNaC70YdUdnlnzoAh6xewy_EqxPfFGw02qg9P86S4X3_dnF-W3c23q_NVV8q6JqkUTGFdg6KcapA1I0JQPQgsGyx5TSpBRK4FGiaXrZZCYK4H0taaAMNQiYqeFJ_n3BFsPwWzhfDQezD95arrTYiuxzVuOGd8T7L5bDbL4GMMSv8lCO6Pz-ifPSMTn2ZigijB6ty3NPEfVrVt1R6vaGabcfrY7MEHO_QJHqwPf5hn0X36lTL35b8cfem2R3swr5w</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Malet, J.</creator><creator>Michielsen, N.</creator><creator>Boulaud, D.</creator><creator>Renoux, A.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5853-1694</orcidid></search><sort><creationdate>20000301</creationdate><title>Mass Transfer of Diffusive Species with Nonconstant In-Flight Formation and Removal in Laminar Tube Flow. Application to Unattached Short-Lived Radon Daughters</title><author>Malet, J. ; Michielsen, N. ; Boulaud, D. ; Renoux, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-b7e0f4ae383fac471bb3fdb0c50c8412b1b303a57c69fcbb08fd194f1a70a2b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aerosols</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>General and physical chemistry</topic><topic>Mechanics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malet, J.</creatorcontrib><creatorcontrib>Michielsen, N.</creatorcontrib><creatorcontrib>Boulaud, D.</creatorcontrib><creatorcontrib>Renoux, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Aerosol science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malet, J.</au><au>Michielsen, N.</au><au>Boulaud, D.</au><au>Renoux, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass Transfer of Diffusive Species with Nonconstant In-Flight Formation and Removal in Laminar Tube Flow. Application to Unattached Short-Lived Radon Daughters</atitle><jtitle>Aerosol science and technology</jtitle><date>2000-03-01</date><risdate>2000</risdate><volume>32</volume><issue>3</issue><spage>168</spage><epage>183</epage><pages>168-183</pages><issn>0278-6826</issn><eissn>1521-7388</eissn><coden>ASTYDQ</coden><abstract>This article deals with convective-diffusive aerosol transport with in-flight formation and removal and is applied to the unattached fraction of short-lived radon decay products. Two novel contributions to previous studies are given in this numerical and experimental work: on the one hand, we solve the mass-transport equations for all the short-lived radon daughters; on the other hand, we include the 218 Po neutralization into the mass-transport equation of the first radon decay product. Concerning the mass-transfer of all short-lived radon daughters, numerical calculations lead to the development of simple correlations for the 214 Pb and 214 Bi penetration fractions. Those correlations can be used to determine the diffusion coefficient of 214 Pb and 214 Bi using the 2-filter method. In our experiments, a diffusion coefficient equal to 5 X 10 -6 m 2 s -1 is found for the 214 Pb. Concerning the 218 Po neutralization, better agreement is observed between our numerical and experimental results when 218 Po neutralization is taken into account. These results confirm the neutralization rates found by Howard and Strange (1994).</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/027868200303713</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5853-1694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-6826
ispartof Aerosol science and technology, 2000-03, Vol.32 (3), p.168-183
issn 0278-6826
1521-7388
language eng
recordid cdi_pascalfrancis_primary_1299292
source IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Aerosols
Chemistry
Colloidal state and disperse state
Exact sciences and technology
Fluid mechanics
General and physical chemistry
Mechanics
Physics
title Mass Transfer of Diffusive Species with Nonconstant In-Flight Formation and Removal in Laminar Tube Flow. Application to Unattached Short-Lived Radon Daughters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20Transfer%20of%20Diffusive%20Species%20with%20Nonconstant%20In-Flight%20Formation%20and%20Removal%20in%20Laminar%20Tube%20Flow.%20Application%20to%20Unattached%20Short-Lived%20Radon%20Daughters&rft.jtitle=Aerosol%20science%20and%20technology&rft.au=Malet,%20J.&rft.date=2000-03-01&rft.volume=32&rft.issue=3&rft.spage=168&rft.epage=183&rft.pages=168-183&rft.issn=0278-6826&rft.eissn=1521-7388&rft.coden=ASTYDQ&rft_id=info:doi/10.1080/027868200303713&rft_dat=%3Chal_pasca%3Eoai_HAL_irsn_04058878v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true