Measurement-Methods Comparisons and Linear Statistical Relationship

The linear statistical relationship model can be used to compare two measurement procedures. Crude methods are now typically used in practice because the statistical concepts are often not understood by practitioners. To clarify concepts, we define three types of equivalency based on accuracy and pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 1999-08, Vol.41 (3), p.192-201
Hauptverfasser: Tan, Charles Y., Iglewicz, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 3
container_start_page 192
container_title Technometrics
container_volume 41
creator Tan, Charles Y.
Iglewicz, Boris
description The linear statistical relationship model can be used to compare two measurement procedures. Crude methods are now typically used in practice because the statistical concepts are often not understood by practitioners. To clarify concepts, we define three types of equivalency based on accuracy and precision of the measurement methods and show that the confidence interval for slope depends on sample size and information size. These insights lead to obtaining bounded confidence intervals and equivalence tests. The derived results provide the basis for designing and analyzing a comparison experiment. An example from practice is used to illustrate the methodology.
doi_str_mv 10.1080/00401706.1999.10485668
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1271252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1270564</jstor_id><sourcerecordid>1270564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-e0e197e477bbc1eb39f4e2a08c1722526309d668be0969b907d38d8b7ac4fd0d3</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnaXyimdOt0JNmWtAyhL0go9LEWsiUTB9tyJYWSv69MEtJdV8MMZ-7cuQjdYphh4PAAkAFmUMywECKOMp4XBT9DE5xTlhJG6DmajFA6UpfoyvsNAKaEswlarIzyW2c604d0ZcLaap8sbDco13jb-0T1Olk2vVEu-QgqND40lWqTd9PGJgLrZrhGF7Vqvbk51Cn6enr8XLyky7fn18V8mVYU45AaMFgwkzFWlhU2JRV1ZogCXmFGSE4KCkJH56UBUYhSANOUa14yVWW1Bk2n6G6vOzj7vTU-yI3duj6elATTgmMqeISKPVQ5670ztRxc0ym3kxjkmJc85iXHvOQxr7h4f1BXPn5YO9VXjT9tE4ajyRO28cG6v-KEAhsxyIssYvM91vS1dZ36sa7VMqhda91Rmv7j6BfltYm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213681398</pqid></control><display><type>article</type><title>Measurement-Methods Comparisons and Linear Statistical Relationship</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Tan, Charles Y. ; Iglewicz, Boris</creator><creatorcontrib>Tan, Charles Y. ; Iglewicz, Boris</creatorcontrib><description>The linear statistical relationship model can be used to compare two measurement procedures. Crude methods are now typically used in practice because the statistical concepts are often not understood by practitioners. To clarify concepts, we define three types of equivalency based on accuracy and precision of the measurement methods and show that the confidence interval for slope depends on sample size and information size. These insights lead to obtaining bounded confidence intervals and equivalence tests. The derived results provide the basis for designing and analyzing a comparison experiment. An example from practice is used to illustrate the methodology.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.1999.10485668</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor &amp; Francis Group</publisher><subject>Circles ; Confidence interval ; Confidence interval for slope ; Ellipses ; Equivalence test ; Errors-in-variable regression ; Exact sciences and technology ; Experiment design ; Fall lines ; Inference ; Linear inference, regression ; Linear regression ; Mathematics ; Maximum likelihood estimation ; Measurement-error model ; Probability and statistics ; Sample size ; Sciences and techniques of general use ; Statistical theories ; Statistics</subject><ispartof>Technometrics, 1999-08, Vol.41 (3), p.192-201</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><rights>Copyright 1999 The American Statistical Association and the ASQ</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Society for Quality Aug 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-e0e197e477bbc1eb39f4e2a08c1722526309d668be0969b907d38d8b7ac4fd0d3</citedby><cites>FETCH-LOGICAL-c311t-e0e197e477bbc1eb39f4e2a08c1722526309d668be0969b907d38d8b7ac4fd0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1270564$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1270564$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1271252$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Charles Y.</creatorcontrib><creatorcontrib>Iglewicz, Boris</creatorcontrib><title>Measurement-Methods Comparisons and Linear Statistical Relationship</title><title>Technometrics</title><description>The linear statistical relationship model can be used to compare two measurement procedures. Crude methods are now typically used in practice because the statistical concepts are often not understood by practitioners. To clarify concepts, we define three types of equivalency based on accuracy and precision of the measurement methods and show that the confidence interval for slope depends on sample size and information size. These insights lead to obtaining bounded confidence intervals and equivalence tests. The derived results provide the basis for designing and analyzing a comparison experiment. An example from practice is used to illustrate the methodology.</description><subject>Circles</subject><subject>Confidence interval</subject><subject>Confidence interval for slope</subject><subject>Ellipses</subject><subject>Equivalence test</subject><subject>Errors-in-variable regression</subject><subject>Exact sciences and technology</subject><subject>Experiment design</subject><subject>Fall lines</subject><subject>Inference</subject><subject>Linear inference, regression</subject><subject>Linear regression</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Measurement-error model</subject><subject>Probability and statistics</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistical theories</subject><subject>Statistics</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkMtqwzAQRUVpoWnaXyimdOt0JNmWtAyhL0go9LEWsiUTB9tyJYWSv69MEtJdV8MMZ-7cuQjdYphh4PAAkAFmUMywECKOMp4XBT9DE5xTlhJG6DmajFA6UpfoyvsNAKaEswlarIzyW2c604d0ZcLaap8sbDco13jb-0T1Olk2vVEu-QgqND40lWqTd9PGJgLrZrhGF7Vqvbk51Cn6enr8XLyky7fn18V8mVYU45AaMFgwkzFWlhU2JRV1ZogCXmFGSE4KCkJH56UBUYhSANOUa14yVWW1Bk2n6G6vOzj7vTU-yI3duj6elATTgmMqeISKPVQ5670ztRxc0ym3kxjkmJc85iXHvOQxr7h4f1BXPn5YO9VXjT9tE4ajyRO28cG6v-KEAhsxyIssYvM91vS1dZ36sa7VMqhda91Rmv7j6BfltYm4</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Tan, Charles Y.</creator><creator>Iglewicz, Boris</creator><general>Taylor &amp; Francis Group</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><general>American Society for Quality</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19990801</creationdate><title>Measurement-Methods Comparisons and Linear Statistical Relationship</title><author>Tan, Charles Y. ; Iglewicz, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-e0e197e477bbc1eb39f4e2a08c1722526309d668be0969b907d38d8b7ac4fd0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Circles</topic><topic>Confidence interval</topic><topic>Confidence interval for slope</topic><topic>Ellipses</topic><topic>Equivalence test</topic><topic>Errors-in-variable regression</topic><topic>Exact sciences and technology</topic><topic>Experiment design</topic><topic>Fall lines</topic><topic>Inference</topic><topic>Linear inference, regression</topic><topic>Linear regression</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Measurement-error model</topic><topic>Probability and statistics</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistical theories</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Charles Y.</creatorcontrib><creatorcontrib>Iglewicz, Boris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Charles Y.</au><au>Iglewicz, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement-Methods Comparisons and Linear Statistical Relationship</atitle><jtitle>Technometrics</jtitle><date>1999-08-01</date><risdate>1999</risdate><volume>41</volume><issue>3</issue><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>The linear statistical relationship model can be used to compare two measurement procedures. Crude methods are now typically used in practice because the statistical concepts are often not understood by practitioners. To clarify concepts, we define three types of equivalency based on accuracy and precision of the measurement methods and show that the confidence interval for slope depends on sample size and information size. These insights lead to obtaining bounded confidence intervals and equivalence tests. The derived results provide the basis for designing and analyzing a comparison experiment. An example from practice is used to illustrate the methodology.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00401706.1999.10485668</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 1999-08, Vol.41 (3), p.192-201
issn 0040-1706
1537-2723
language eng
recordid cdi_pascalfrancis_primary_1271252
source Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Circles
Confidence interval
Confidence interval for slope
Ellipses
Equivalence test
Errors-in-variable regression
Exact sciences and technology
Experiment design
Fall lines
Inference
Linear inference, regression
Linear regression
Mathematics
Maximum likelihood estimation
Measurement-error model
Probability and statistics
Sample size
Sciences and techniques of general use
Statistical theories
Statistics
title Measurement-Methods Comparisons and Linear Statistical Relationship
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement-Methods%20Comparisons%20and%20Linear%20Statistical%20Relationship&rft.jtitle=Technometrics&rft.au=Tan,%20Charles%20Y.&rft.date=1999-08-01&rft.volume=41&rft.issue=3&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.1999.10485668&rft_dat=%3Cjstor_pasca%3E1270564%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213681398&rft_id=info:pmid/&rft_jstor_id=1270564&rfr_iscdi=true