Measurement-Methods Comparisons and Linear Statistical Relationship
The linear statistical relationship model can be used to compare two measurement procedures. Crude methods are now typically used in practice because the statistical concepts are often not understood by practitioners. To clarify concepts, we define three types of equivalency based on accuracy and pr...
Gespeichert in:
Veröffentlicht in: | Technometrics 1999-08, Vol.41 (3), p.192-201 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 3 |
container_start_page | 192 |
container_title | Technometrics |
container_volume | 41 |
creator | Tan, Charles Y. Iglewicz, Boris |
description | The linear statistical relationship model can be used to compare two measurement procedures. Crude methods are now typically used in practice because the statistical concepts are often not understood by practitioners. To clarify concepts, we define three types of equivalency based on accuracy and precision of the measurement methods and show that the confidence interval for slope depends on sample size and information size. These insights lead to obtaining bounded confidence intervals and equivalence tests. The derived results provide the basis for designing and analyzing a comparison experiment. An example from practice is used to illustrate the methodology. |
doi_str_mv | 10.1080/00401706.1999.10485668 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1271252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1270564</jstor_id><sourcerecordid>1270564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-e0e197e477bbc1eb39f4e2a08c1722526309d668be0969b907d38d8b7ac4fd0d3</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnaXyimdOt0JNmWtAyhL0go9LEWsiUTB9tyJYWSv69MEtJdV8MMZ-7cuQjdYphh4PAAkAFmUMywECKOMp4XBT9DE5xTlhJG6DmajFA6UpfoyvsNAKaEswlarIzyW2c604d0ZcLaap8sbDco13jb-0T1Olk2vVEu-QgqND40lWqTd9PGJgLrZrhGF7Vqvbk51Cn6enr8XLyky7fn18V8mVYU45AaMFgwkzFWlhU2JRV1ZogCXmFGSE4KCkJH56UBUYhSANOUa14yVWW1Bk2n6G6vOzj7vTU-yI3duj6elATTgmMqeISKPVQ5670ztRxc0ym3kxjkmJc85iXHvOQxr7h4f1BXPn5YO9VXjT9tE4ajyRO28cG6v-KEAhsxyIssYvM91vS1dZ36sa7VMqhda91Rmv7j6BfltYm4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213681398</pqid></control><display><type>article</type><title>Measurement-Methods Comparisons and Linear Statistical Relationship</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><creator>Tan, Charles Y. ; Iglewicz, Boris</creator><creatorcontrib>Tan, Charles Y. ; Iglewicz, Boris</creatorcontrib><description>The linear statistical relationship model can be used to compare two measurement procedures. Crude methods are now typically used in practice because the statistical concepts are often not understood by practitioners. To clarify concepts, we define three types of equivalency based on accuracy and precision of the measurement methods and show that the confidence interval for slope depends on sample size and information size. These insights lead to obtaining bounded confidence intervals and equivalence tests. The derived results provide the basis for designing and analyzing a comparison experiment. An example from practice is used to illustrate the methodology.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.1999.10485668</identifier><identifier>CODEN: TCMTA2</identifier><language>eng</language><publisher>Alexandria, VI: Taylor & Francis Group</publisher><subject>Circles ; Confidence interval ; Confidence interval for slope ; Ellipses ; Equivalence test ; Errors-in-variable regression ; Exact sciences and technology ; Experiment design ; Fall lines ; Inference ; Linear inference, regression ; Linear regression ; Mathematics ; Maximum likelihood estimation ; Measurement-error model ; Probability and statistics ; Sample size ; Sciences and techniques of general use ; Statistical theories ; Statistics</subject><ispartof>Technometrics, 1999-08, Vol.41 (3), p.192-201</ispartof><rights>Copyright Taylor & Francis Group, LLC 1999</rights><rights>Copyright 1999 The American Statistical Association and the ASQ</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Society for Quality Aug 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-e0e197e477bbc1eb39f4e2a08c1722526309d668be0969b907d38d8b7ac4fd0d3</citedby><cites>FETCH-LOGICAL-c311t-e0e197e477bbc1eb39f4e2a08c1722526309d668be0969b907d38d8b7ac4fd0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1270564$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1270564$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1271252$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Charles Y.</creatorcontrib><creatorcontrib>Iglewicz, Boris</creatorcontrib><title>Measurement-Methods Comparisons and Linear Statistical Relationship</title><title>Technometrics</title><description>The linear statistical relationship model can be used to compare two measurement procedures. Crude methods are now typically used in practice because the statistical concepts are often not understood by practitioners. To clarify concepts, we define three types of equivalency based on accuracy and precision of the measurement methods and show that the confidence interval for slope depends on sample size and information size. These insights lead to obtaining bounded confidence intervals and equivalence tests. The derived results provide the basis for designing and analyzing a comparison experiment. An example from practice is used to illustrate the methodology.</description><subject>Circles</subject><subject>Confidence interval</subject><subject>Confidence interval for slope</subject><subject>Ellipses</subject><subject>Equivalence test</subject><subject>Errors-in-variable regression</subject><subject>Exact sciences and technology</subject><subject>Experiment design</subject><subject>Fall lines</subject><subject>Inference</subject><subject>Linear inference, regression</subject><subject>Linear regression</subject><subject>Mathematics</subject><subject>Maximum likelihood estimation</subject><subject>Measurement-error model</subject><subject>Probability and statistics</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistical theories</subject><subject>Statistics</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkMtqwzAQRUVpoWnaXyimdOt0JNmWtAyhL0go9LEWsiUTB9tyJYWSv69MEtJdV8MMZ-7cuQjdYphh4PAAkAFmUMywECKOMp4XBT9DE5xTlhJG6DmajFA6UpfoyvsNAKaEswlarIzyW2c604d0ZcLaap8sbDco13jb-0T1Olk2vVEu-QgqND40lWqTd9PGJgLrZrhGF7Vqvbk51Cn6enr8XLyky7fn18V8mVYU45AaMFgwkzFWlhU2JRV1ZogCXmFGSE4KCkJH56UBUYhSANOUa14yVWW1Bk2n6G6vOzj7vTU-yI3duj6elATTgmMqeISKPVQ5670ztRxc0ym3kxjkmJc85iXHvOQxr7h4f1BXPn5YO9VXjT9tE4ajyRO28cG6v-KEAhsxyIssYvM91vS1dZ36sa7VMqhda91Rmv7j6BfltYm4</recordid><startdate>19990801</startdate><enddate>19990801</enddate><creator>Tan, Charles Y.</creator><creator>Iglewicz, Boris</creator><general>Taylor & Francis Group</general><general>The American Society for Quality and The American Statistical Association</general><general>American Society for Quality Control</general><general>American Statistical Association</general><general>American Society for Quality</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19990801</creationdate><title>Measurement-Methods Comparisons and Linear Statistical Relationship</title><author>Tan, Charles Y. ; Iglewicz, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-e0e197e477bbc1eb39f4e2a08c1722526309d668be0969b907d38d8b7ac4fd0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Circles</topic><topic>Confidence interval</topic><topic>Confidence interval for slope</topic><topic>Ellipses</topic><topic>Equivalence test</topic><topic>Errors-in-variable regression</topic><topic>Exact sciences and technology</topic><topic>Experiment design</topic><topic>Fall lines</topic><topic>Inference</topic><topic>Linear inference, regression</topic><topic>Linear regression</topic><topic>Mathematics</topic><topic>Maximum likelihood estimation</topic><topic>Measurement-error model</topic><topic>Probability and statistics</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistical theories</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Charles Y.</creatorcontrib><creatorcontrib>Iglewicz, Boris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Charles Y.</au><au>Iglewicz, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement-Methods Comparisons and Linear Statistical Relationship</atitle><jtitle>Technometrics</jtitle><date>1999-08-01</date><risdate>1999</risdate><volume>41</volume><issue>3</issue><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><coden>TCMTA2</coden><abstract>The linear statistical relationship model can be used to compare two measurement procedures. Crude methods are now typically used in practice because the statistical concepts are often not understood by practitioners. To clarify concepts, we define three types of equivalency based on accuracy and precision of the measurement methods and show that the confidence interval for slope depends on sample size and information size. These insights lead to obtaining bounded confidence intervals and equivalence tests. The derived results provide the basis for designing and analyzing a comparison experiment. An example from practice is used to illustrate the methodology.</abstract><cop>Alexandria, VI</cop><cop>Milwaukee, WI</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00401706.1999.10485668</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 1999-08, Vol.41 (3), p.192-201 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_pascalfrancis_primary_1271252 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics |
subjects | Circles Confidence interval Confidence interval for slope Ellipses Equivalence test Errors-in-variable regression Exact sciences and technology Experiment design Fall lines Inference Linear inference, regression Linear regression Mathematics Maximum likelihood estimation Measurement-error model Probability and statistics Sample size Sciences and techniques of general use Statistical theories Statistics |
title | Measurement-Methods Comparisons and Linear Statistical Relationship |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement-Methods%20Comparisons%20and%20Linear%20Statistical%20Relationship&rft.jtitle=Technometrics&rft.au=Tan,%20Charles%20Y.&rft.date=1999-08-01&rft.volume=41&rft.issue=3&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=0040-1706&rft.eissn=1537-2723&rft.coden=TCMTA2&rft_id=info:doi/10.1080/00401706.1999.10485668&rft_dat=%3Cjstor_pasca%3E1270564%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213681398&rft_id=info:pmid/&rft_jstor_id=1270564&rfr_iscdi=true |