The asymptotic kurtosis for maximum likelihood estimators

In general, when moments exist, the dominant term in the fourth central moment of an estimator is three times the square of the asymptotic variance: this to the value three for the asymptotic kurtosis. Working on the approach given in Bowman and Shenton (1998) we now complete the basic asymptotic mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in statistics. Theory and methods 1999-01, Vol.28 (11), p.2641-2654
Hauptverfasser: Bowman, K.O., Shenton, L.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2654
container_issue 11
container_start_page 2641
container_title Communications in statistics. Theory and methods
container_volume 28
creator Bowman, K.O.
Shenton, L.R.
description In general, when moments exist, the dominant term in the fourth central moment of an estimator is three times the square of the asymptotic variance: this to the value three for the asymptotic kurtosis. Working on the approach given in Bowman and Shenton (1998) we now complete the basic asymptotic moment profile by giving an expression for the third order term in the fourth central monment of maximum likelihood estimator, assuming the existence of derivatives of n density and also the existence of the covariance matrix inverse. A four moment distributional model, such as the Pearson system, or Johnson translation system, may be used to approximate pcrccntage points of the estimators.
doi_str_mv 10.1080/03610929908832443
format Article
fullrecord <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_1220947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1220947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-22116936a067d7406af3d3dde1eca4df646edf12082ab76dfbfd9986a04c29733</originalsourceid><addsrcrecordid>eNqFj01LAzEQhoMouFZ_gLc9eF1NMmmyAS9StAoFLxW8LWk-aOxusyQptv_eLVU8FPQ0h3med-ZF6JrgW4JrfIeBEyyplLiugTIGJ6ggY6AVI-P3U1Ts99UA8HN0kdIHxmQsaiiQnC9tqdKu63PIXperTcwh-VS6EMtObX236crWr2zrlyGY0qbsO5VDTJfozKk22avvOUJvT4_zyXM1e52-TB5mlQYBuaKUEC6BK8yFEQxz5cCAMZZYrZhxnHFrHKG4pmohuHELZ6SsB55pKgXACJFDro4hpWhd08fhhbhrCG723Zuj7oNzc3B6lbRqXVRr7dOvSCmWTAzY_QHz66Fupz5DbE2T1a4N8ceBv66If_Ujq8nbDF9lH37N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The asymptotic kurtosis for maximum likelihood estimators</title><source>Access via Taylor &amp; Francis</source><creator>Bowman, K.O. ; Shenton, L.R.</creator><creatorcontrib>Bowman, K.O. ; Shenton, L.R.</creatorcontrib><description>In general, when moments exist, the dominant term in the fourth central moment of an estimator is three times the square of the asymptotic variance: this to the value three for the asymptotic kurtosis. Working on the approach given in Bowman and Shenton (1998) we now complete the basic asymptotic moment profile by giving an expression for the third order term in the fourth central monment of maximum likelihood estimator, assuming the existence of derivatives of n density and also the existence of the covariance matrix inverse. A four moment distributional model, such as the Pearson system, or Johnson translation system, may be used to approximate pcrccntage points of the estimators.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610929908832443</identifier><identifier>CODEN: CSTMDC</identifier><language>eng</language><publisher>Philadelphia, PA: Marcel Dekker, Inc</publisher><subject>asymptotic series: expectation of random variable products: Fisher's linkage ; Distribution theory ; Exact sciences and technology ; Mathematics ; Parametric inference ; percentage points: moment series ; polarization operator: products of ran¬dom variables ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Communications in statistics. Theory and methods, 1999-01, Vol.28 (11), p.2641-2654</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-22116936a067d7406af3d3dde1eca4df646edf12082ab76dfbfd9986a04c29733</citedby><cites>FETCH-LOGICAL-c373t-22116936a067d7406af3d3dde1eca4df646edf12082ab76dfbfd9986a04c29733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03610929908832443$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03610929908832443$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1220947$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowman, K.O.</creatorcontrib><creatorcontrib>Shenton, L.R.</creatorcontrib><title>The asymptotic kurtosis for maximum likelihood estimators</title><title>Communications in statistics. Theory and methods</title><description>In general, when moments exist, the dominant term in the fourth central moment of an estimator is three times the square of the asymptotic variance: this to the value three for the asymptotic kurtosis. Working on the approach given in Bowman and Shenton (1998) we now complete the basic asymptotic moment profile by giving an expression for the third order term in the fourth central monment of maximum likelihood estimator, assuming the existence of derivatives of n density and also the existence of the covariance matrix inverse. A four moment distributional model, such as the Pearson system, or Johnson translation system, may be used to approximate pcrccntage points of the estimators.</description><subject>asymptotic series: expectation of random variable products: Fisher's linkage</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Parametric inference</subject><subject>percentage points: moment series</subject><subject>polarization operator: products of ran¬dom variables</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFj01LAzEQhoMouFZ_gLc9eF1NMmmyAS9StAoFLxW8LWk-aOxusyQptv_eLVU8FPQ0h3med-ZF6JrgW4JrfIeBEyyplLiugTIGJ6ggY6AVI-P3U1Ts99UA8HN0kdIHxmQsaiiQnC9tqdKu63PIXperTcwh-VS6EMtObX236crWr2zrlyGY0qbsO5VDTJfozKk22avvOUJvT4_zyXM1e52-TB5mlQYBuaKUEC6BK8yFEQxz5cCAMZZYrZhxnHFrHKG4pmohuHELZ6SsB55pKgXACJFDro4hpWhd08fhhbhrCG723Zuj7oNzc3B6lbRqXVRr7dOvSCmWTAzY_QHz66Fupz5DbE2T1a4N8ceBv66If_Ujq8nbDF9lH37N</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Bowman, K.O.</creator><creator>Shenton, L.R.</creator><general>Marcel Dekker, Inc</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990101</creationdate><title>The asymptotic kurtosis for maximum likelihood estimators</title><author>Bowman, K.O. ; Shenton, L.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-22116936a067d7406af3d3dde1eca4df646edf12082ab76dfbfd9986a04c29733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>asymptotic series: expectation of random variable products: Fisher's linkage</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Parametric inference</topic><topic>percentage points: moment series</topic><topic>polarization operator: products of ran¬dom variables</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowman, K.O.</creatorcontrib><creatorcontrib>Shenton, L.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowman, K.O.</au><au>Shenton, L.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The asymptotic kurtosis for maximum likelihood estimators</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>28</volume><issue>11</issue><spage>2641</spage><epage>2654</epage><pages>2641-2654</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><coden>CSTMDC</coden><abstract>In general, when moments exist, the dominant term in the fourth central moment of an estimator is three times the square of the asymptotic variance: this to the value three for the asymptotic kurtosis. Working on the approach given in Bowman and Shenton (1998) we now complete the basic asymptotic moment profile by giving an expression for the third order term in the fourth central monment of maximum likelihood estimator, assuming the existence of derivatives of n density and also the existence of the covariance matrix inverse. A four moment distributional model, such as the Pearson system, or Johnson translation system, may be used to approximate pcrccntage points of the estimators.</abstract><cop>Philadelphia, PA</cop><pub>Marcel Dekker, Inc</pub><doi>10.1080/03610929908832443</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 1999-01, Vol.28 (11), p.2641-2654
issn 0361-0926
1532-415X
language eng
recordid cdi_pascalfrancis_primary_1220947
source Access via Taylor & Francis
subjects asymptotic series: expectation of random variable products: Fisher's linkage
Distribution theory
Exact sciences and technology
Mathematics
Parametric inference
percentage points: moment series
polarization operator: products of ran¬dom variables
Probability and statistics
Sciences and techniques of general use
Statistics
title The asymptotic kurtosis for maximum likelihood estimators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20asymptotic%20kurtosis%20for%20maximum%20likelihood%20estimators&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Bowman,%20K.O.&rft.date=1999-01-01&rft.volume=28&rft.issue=11&rft.spage=2641&rft.epage=2654&rft.pages=2641-2654&rft.issn=0361-0926&rft.eissn=1532-415X&rft.coden=CSTMDC&rft_id=info:doi/10.1080/03610929908832443&rft_dat=%3Cpascalfrancis_infor%3E1220947%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true