The asymptotic kurtosis for maximum likelihood estimators
In general, when moments exist, the dominant term in the fourth central moment of an estimator is three times the square of the asymptotic variance: this to the value three for the asymptotic kurtosis. Working on the approach given in Bowman and Shenton (1998) we now complete the basic asymptotic mo...
Gespeichert in:
Veröffentlicht in: | Communications in statistics. Theory and methods 1999-01, Vol.28 (11), p.2641-2654 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2654 |
---|---|
container_issue | 11 |
container_start_page | 2641 |
container_title | Communications in statistics. Theory and methods |
container_volume | 28 |
creator | Bowman, K.O. Shenton, L.R. |
description | In general, when moments exist, the dominant term in the fourth central moment of an estimator is three times the square of the asymptotic variance: this to the value three for the asymptotic kurtosis. Working on the approach given in Bowman and Shenton (1998) we now complete the basic asymptotic moment profile by giving an expression for the third order term in the fourth central monment of maximum likelihood estimator, assuming the existence of derivatives of n density and also the existence of the covariance matrix inverse. A four moment distributional model, such as the Pearson system, or Johnson translation system, may be used to approximate pcrccntage points of the estimators. |
doi_str_mv | 10.1080/03610929908832443 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_1220947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1220947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-22116936a067d7406af3d3dde1eca4df646edf12082ab76dfbfd9986a04c29733</originalsourceid><addsrcrecordid>eNqFj01LAzEQhoMouFZ_gLc9eF1NMmmyAS9StAoFLxW8LWk-aOxusyQptv_eLVU8FPQ0h3med-ZF6JrgW4JrfIeBEyyplLiugTIGJ6ggY6AVI-P3U1Ts99UA8HN0kdIHxmQsaiiQnC9tqdKu63PIXperTcwh-VS6EMtObX236crWr2zrlyGY0qbsO5VDTJfozKk22avvOUJvT4_zyXM1e52-TB5mlQYBuaKUEC6BK8yFEQxz5cCAMZZYrZhxnHFrHKG4pmohuHELZ6SsB55pKgXACJFDro4hpWhd08fhhbhrCG723Zuj7oNzc3B6lbRqXVRr7dOvSCmWTAzY_QHz66Fupz5DbE2T1a4N8ceBv66If_Ujq8nbDF9lH37N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The asymptotic kurtosis for maximum likelihood estimators</title><source>Access via Taylor & Francis</source><creator>Bowman, K.O. ; Shenton, L.R.</creator><creatorcontrib>Bowman, K.O. ; Shenton, L.R.</creatorcontrib><description>In general, when moments exist, the dominant term in the fourth central moment of an estimator is three times the square of the asymptotic variance: this to the value three for the asymptotic kurtosis. Working on the approach given in Bowman and Shenton (1998) we now complete the basic asymptotic moment profile by giving an expression for the third order term in the fourth central monment of maximum likelihood estimator, assuming the existence of derivatives of n density and also the existence of the covariance matrix inverse. A four moment distributional model, such as the Pearson system, or Johnson translation system, may be used to approximate pcrccntage points of the estimators.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610929908832443</identifier><identifier>CODEN: CSTMDC</identifier><language>eng</language><publisher>Philadelphia, PA: Marcel Dekker, Inc</publisher><subject>asymptotic series: expectation of random variable products: Fisher's linkage ; Distribution theory ; Exact sciences and technology ; Mathematics ; Parametric inference ; percentage points: moment series ; polarization operator: products of ran¬dom variables ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Communications in statistics. Theory and methods, 1999-01, Vol.28 (11), p.2641-2654</ispartof><rights>Copyright Taylor & Francis Group, LLC 1999</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-22116936a067d7406af3d3dde1eca4df646edf12082ab76dfbfd9986a04c29733</citedby><cites>FETCH-LOGICAL-c373t-22116936a067d7406af3d3dde1eca4df646edf12082ab76dfbfd9986a04c29733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03610929908832443$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03610929908832443$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1220947$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowman, K.O.</creatorcontrib><creatorcontrib>Shenton, L.R.</creatorcontrib><title>The asymptotic kurtosis for maximum likelihood estimators</title><title>Communications in statistics. Theory and methods</title><description>In general, when moments exist, the dominant term in the fourth central moment of an estimator is three times the square of the asymptotic variance: this to the value three for the asymptotic kurtosis. Working on the approach given in Bowman and Shenton (1998) we now complete the basic asymptotic moment profile by giving an expression for the third order term in the fourth central monment of maximum likelihood estimator, assuming the existence of derivatives of n density and also the existence of the covariance matrix inverse. A four moment distributional model, such as the Pearson system, or Johnson translation system, may be used to approximate pcrccntage points of the estimators.</description><subject>asymptotic series: expectation of random variable products: Fisher's linkage</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Parametric inference</subject><subject>percentage points: moment series</subject><subject>polarization operator: products of ran¬dom variables</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFj01LAzEQhoMouFZ_gLc9eF1NMmmyAS9StAoFLxW8LWk-aOxusyQptv_eLVU8FPQ0h3med-ZF6JrgW4JrfIeBEyyplLiugTIGJ6ggY6AVI-P3U1Ts99UA8HN0kdIHxmQsaiiQnC9tqdKu63PIXperTcwh-VS6EMtObX236crWr2zrlyGY0qbsO5VDTJfozKk22avvOUJvT4_zyXM1e52-TB5mlQYBuaKUEC6BK8yFEQxz5cCAMZZYrZhxnHFrHKG4pmohuHELZ6SsB55pKgXACJFDro4hpWhd08fhhbhrCG723Zuj7oNzc3B6lbRqXVRr7dOvSCmWTAzY_QHz66Fupz5DbE2T1a4N8ceBv66If_Ujq8nbDF9lH37N</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Bowman, K.O.</creator><creator>Shenton, L.R.</creator><general>Marcel Dekker, Inc</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990101</creationdate><title>The asymptotic kurtosis for maximum likelihood estimators</title><author>Bowman, K.O. ; Shenton, L.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-22116936a067d7406af3d3dde1eca4df646edf12082ab76dfbfd9986a04c29733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>asymptotic series: expectation of random variable products: Fisher's linkage</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Parametric inference</topic><topic>percentage points: moment series</topic><topic>polarization operator: products of ran¬dom variables</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowman, K.O.</creatorcontrib><creatorcontrib>Shenton, L.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowman, K.O.</au><au>Shenton, L.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The asymptotic kurtosis for maximum likelihood estimators</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>1999-01-01</date><risdate>1999</risdate><volume>28</volume><issue>11</issue><spage>2641</spage><epage>2654</epage><pages>2641-2654</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><coden>CSTMDC</coden><abstract>In general, when moments exist, the dominant term in the fourth central moment of an estimator is three times the square of the asymptotic variance: this to the value three for the asymptotic kurtosis. Working on the approach given in Bowman and Shenton (1998) we now complete the basic asymptotic moment profile by giving an expression for the third order term in the fourth central monment of maximum likelihood estimator, assuming the existence of derivatives of n density and also the existence of the covariance matrix inverse. A four moment distributional model, such as the Pearson system, or Johnson translation system, may be used to approximate pcrccntage points of the estimators.</abstract><cop>Philadelphia, PA</cop><pub>Marcel Dekker, Inc</pub><doi>10.1080/03610929908832443</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 1999-01, Vol.28 (11), p.2641-2654 |
issn | 0361-0926 1532-415X |
language | eng |
recordid | cdi_pascalfrancis_primary_1220947 |
source | Access via Taylor & Francis |
subjects | asymptotic series: expectation of random variable products: Fisher's linkage Distribution theory Exact sciences and technology Mathematics Parametric inference percentage points: moment series polarization operator: products of ran¬dom variables Probability and statistics Sciences and techniques of general use Statistics |
title | The asymptotic kurtosis for maximum likelihood estimators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20asymptotic%20kurtosis%20for%20maximum%20likelihood%20estimators&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Bowman,%20K.O.&rft.date=1999-01-01&rft.volume=28&rft.issue=11&rft.spage=2641&rft.epage=2654&rft.pages=2641-2654&rft.issn=0361-0926&rft.eissn=1532-415X&rft.coden=CSTMDC&rft_id=info:doi/10.1080/03610929908832443&rft_dat=%3Cpascalfrancis_infor%3E1220947%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |