APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA
A method is presented to quantify truncation errors in the discrete transfer method due to discretization of the heat flux integral (hemisphere discretization error) and enclosure boundaries (surface discretization error) for radiation problems involving transparent media. The hemisphere discretizat...
Gespeichert in:
Veröffentlicht in: | Numerical heat transfer. Part B, Fundamentals Fundamentals, 1999-12, Vol.36 (4), p.387-407 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 4 |
container_start_page | 387 |
container_title | Numerical heat transfer. Part B, Fundamentals |
container_volume | 36 |
creator | VERSTEEG, H. K HENSON, J. C MALALASEKERA, W |
description | A method is presented to quantify truncation errors in the discrete transfer method due to discretization of the heat flux integral (hemisphere discretization error) and enclosure boundaries (surface discretization error) for radiation problems involving transparent media. The hemisphere discretization error is generally the larger of the two. Its rate of decay with increasing ray number NR depends strongly on the degree of continuity of the intensity field. For continuous intensity distributions the rate of error decay is proportional to 1/NR, but for piecewise-continuous fields the rate is proportional to 1/square root NR. The surface discretization error causes a small systematic error in the average surface heat flux in a finite-volume CFD/heat transfer calculations. The success of our theory has paved the way to economical error estimation in practically relevant cases. |
doi_str_mv | 10.1080/104077999275596 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_1206772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1206772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-47a22bc52d2c200a259407914d2be56edb519ba2a0a863337a644c0320bb8ba43</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIsoOKdnrzl4tC5Jk3TdLWzpWujakWWwW0l_QaVbRzvQ_fdGqwgDMZfk5Xvf471nWY8IviA4hRMECXRdz_OwS6nHrqwRohjZkGF2bd6G2gbDW-uu71-hOcQhI6vm67VMduGKqzCJgZAykRsQxkAFAgSCK-BH2535UGIpeQQS_4ssws1cCiWAkjze-EKClVBBsngGay4VQLMBmEDEyrBFyO-tm0o3ffnwfY-trS_UPLCjZBnOeWTnDqMnm7ga4yynuMA5hlBj6pm5PEQKnJWUlUVGkZdprKGeMsdxXM0IyaGDYZZNM02csTUZ6uZd2_ddWaXHrt7r7pwimH5uKr3YlDGeBuOo-1w3VacPed3_ahgy18UmjQ5p9aFqu71-a7umSE_63LTdj3NROj29n4w3-9dz_urtA1jvgoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA</title><source>Taylor & Francis Journals Complete</source><creator>VERSTEEG, H. K ; HENSON, J. C ; MALALASEKERA, W</creator><creatorcontrib>VERSTEEG, H. K ; HENSON, J. C ; MALALASEKERA, W</creatorcontrib><description>A method is presented to quantify truncation errors in the discrete transfer method due to discretization of the heat flux integral (hemisphere discretization error) and enclosure boundaries (surface discretization error) for radiation problems involving transparent media. The hemisphere discretization error is generally the larger of the two. Its rate of decay with increasing ray number NR depends strongly on the degree of continuity of the intensity field. For continuous intensity distributions the rate of error decay is proportional to 1/NR, but for piecewise-continuous fields the rate is proportional to 1/square root NR. The surface discretization error causes a small systematic error in the average surface heat flux in a finite-volume CFD/heat transfer calculations. The success of our theory has paved the way to economical error estimation in practically relevant cases.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/104077999275596</identifier><identifier>CODEN: NHBFEE</identifier><language>eng</language><publisher>Philadelphia, PA: Informa UK Ltd</publisher><subject>Analytical and numerical techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Physics ; Thermal radiation</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 1999-12, Vol.36 (4), p.387-407</ispartof><rights>Copyright Taylor & Francis Group, LLC 1999</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-47a22bc52d2c200a259407914d2be56edb519ba2a0a863337a644c0320bb8ba43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/104077999275596$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/104077999275596$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1206772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VERSTEEG, H. K</creatorcontrib><creatorcontrib>HENSON, J. C</creatorcontrib><creatorcontrib>MALALASEKERA, W</creatorcontrib><title>APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>A method is presented to quantify truncation errors in the discrete transfer method due to discretization of the heat flux integral (hemisphere discretization error) and enclosure boundaries (surface discretization error) for radiation problems involving transparent media. The hemisphere discretization error is generally the larger of the two. Its rate of decay with increasing ray number NR depends strongly on the degree of continuity of the intensity field. For continuous intensity distributions the rate of error decay is proportional to 1/NR, but for piecewise-continuous fields the rate is proportional to 1/square root NR. The surface discretization error causes a small systematic error in the average surface heat flux in a finite-volume CFD/heat transfer calculations. The success of our theory has paved the way to economical error estimation in practically relevant cases.</description><subject>Analytical and numerical techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Physics</subject><subject>Thermal radiation</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIsoOKdnrzl4tC5Jk3TdLWzpWujakWWwW0l_QaVbRzvQ_fdGqwgDMZfk5Xvf471nWY8IviA4hRMECXRdz_OwS6nHrqwRohjZkGF2bd6G2gbDW-uu71-hOcQhI6vm67VMduGKqzCJgZAykRsQxkAFAgSCK-BH2535UGIpeQQS_4ssws1cCiWAkjze-EKClVBBsngGay4VQLMBmEDEyrBFyO-tm0o3ffnwfY-trS_UPLCjZBnOeWTnDqMnm7ga4yynuMA5hlBj6pm5PEQKnJWUlUVGkZdprKGeMsdxXM0IyaGDYZZNM02csTUZ6uZd2_ddWaXHrt7r7pwimH5uKr3YlDGeBuOo-1w3VacPed3_ahgy18UmjQ5p9aFqu71-a7umSE_63LTdj3NROj29n4w3-9dz_urtA1jvgoQ</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>VERSTEEG, H. K</creator><creator>HENSON, J. C</creator><creator>MALALASEKERA, W</creator><general>Informa UK Ltd</general><general>Taylor & Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991201</creationdate><title>APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA</title><author>VERSTEEG, H. K ; HENSON, J. C ; MALALASEKERA, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-47a22bc52d2c200a259407914d2be56edb519ba2a0a863337a644c0320bb8ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Analytical and numerical techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Physics</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VERSTEEG, H. K</creatorcontrib><creatorcontrib>HENSON, J. C</creatorcontrib><creatorcontrib>MALALASEKERA, W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VERSTEEG, H. K</au><au>HENSON, J. C</au><au>MALALASEKERA, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>1999-12-01</date><risdate>1999</risdate><volume>36</volume><issue>4</issue><spage>387</spage><epage>407</epage><pages>387-407</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><coden>NHBFEE</coden><abstract>A method is presented to quantify truncation errors in the discrete transfer method due to discretization of the heat flux integral (hemisphere discretization error) and enclosure boundaries (surface discretization error) for radiation problems involving transparent media. The hemisphere discretization error is generally the larger of the two. Its rate of decay with increasing ray number NR depends strongly on the degree of continuity of the intensity field. For continuous intensity distributions the rate of error decay is proportional to 1/NR, but for piecewise-continuous fields the rate is proportional to 1/square root NR. The surface discretization error causes a small systematic error in the average surface heat flux in a finite-volume CFD/heat transfer calculations. The success of our theory has paved the way to economical error estimation in practically relevant cases.</abstract><cop>Philadelphia, PA</cop><pub>Informa UK Ltd</pub><doi>10.1080/104077999275596</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7790 |
ispartof | Numerical heat transfer. Part B, Fundamentals, 1999-12, Vol.36 (4), p.387-407 |
issn | 1040-7790 1521-0626 |
language | eng |
recordid | cdi_pascalfrancis_primary_1206772 |
source | Taylor & Francis Journals Complete |
subjects | Analytical and numerical techniques Exact sciences and technology Fundamental areas of phenomenology (including applications) Heat transfer Physics Thermal radiation |
title | APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPROXIMATION%20ERRORS%20IN%20THE%20HEAT%20FLUX%20INTEGRAL%20OF%20THE%20DISCRETE%20TRANSFER%20METHOD,%20PART%201:%20TRANSPARENT%20MEDIA&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=VERSTEEG,%20H.%20K&rft.date=1999-12-01&rft.volume=36&rft.issue=4&rft.spage=387&rft.epage=407&rft.pages=387-407&rft.issn=1040-7790&rft.eissn=1521-0626&rft.coden=NHBFEE&rft_id=info:doi/10.1080/104077999275596&rft_dat=%3Cpascalfrancis_infor%3E1206772%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |