APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA

A method is presented to quantify truncation errors in the discrete transfer method due to discretization of the heat flux integral (hemisphere discretization error) and enclosure boundaries (surface discretization error) for radiation problems involving transparent media. The hemisphere discretizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical heat transfer. Part B, Fundamentals Fundamentals, 1999-12, Vol.36 (4), p.387-407
Hauptverfasser: VERSTEEG, H. K, HENSON, J. C, MALALASEKERA, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 4
container_start_page 387
container_title Numerical heat transfer. Part B, Fundamentals
container_volume 36
creator VERSTEEG, H. K
HENSON, J. C
MALALASEKERA, W
description A method is presented to quantify truncation errors in the discrete transfer method due to discretization of the heat flux integral (hemisphere discretization error) and enclosure boundaries (surface discretization error) for radiation problems involving transparent media. The hemisphere discretization error is generally the larger of the two. Its rate of decay with increasing ray number NR depends strongly on the degree of continuity of the intensity field. For continuous intensity distributions the rate of error decay is proportional to 1/NR, but for piecewise-continuous fields the rate is proportional to 1/square root NR. The surface discretization error causes a small systematic error in the average surface heat flux in a finite-volume CFD/heat transfer calculations. The success of our theory has paved the way to economical error estimation in practically relevant cases.
doi_str_mv 10.1080/104077999275596
format Article
fullrecord <record><control><sourceid>pascalfrancis_infor</sourceid><recordid>TN_cdi_pascalfrancis_primary_1206772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1206772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-47a22bc52d2c200a259407914d2be56edb519ba2a0a863337a644c0320bb8ba43</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIsoOKdnrzl4tC5Jk3TdLWzpWujakWWwW0l_QaVbRzvQ_fdGqwgDMZfk5Xvf471nWY8IviA4hRMECXRdz_OwS6nHrqwRohjZkGF2bd6G2gbDW-uu71-hOcQhI6vm67VMduGKqzCJgZAykRsQxkAFAgSCK-BH2535UGIpeQQS_4ssws1cCiWAkjze-EKClVBBsngGay4VQLMBmEDEyrBFyO-tm0o3ffnwfY-trS_UPLCjZBnOeWTnDqMnm7ga4yynuMA5hlBj6pm5PEQKnJWUlUVGkZdprKGeMsdxXM0IyaGDYZZNM02csTUZ6uZd2_ddWaXHrt7r7pwimH5uKr3YlDGeBuOo-1w3VacPed3_ahgy18UmjQ5p9aFqu71-a7umSE_63LTdj3NROj29n4w3-9dz_urtA1jvgoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA</title><source>Taylor &amp; Francis Journals Complete</source><creator>VERSTEEG, H. K ; HENSON, J. C ; MALALASEKERA, W</creator><creatorcontrib>VERSTEEG, H. K ; HENSON, J. C ; MALALASEKERA, W</creatorcontrib><description>A method is presented to quantify truncation errors in the discrete transfer method due to discretization of the heat flux integral (hemisphere discretization error) and enclosure boundaries (surface discretization error) for radiation problems involving transparent media. The hemisphere discretization error is generally the larger of the two. Its rate of decay with increasing ray number NR depends strongly on the degree of continuity of the intensity field. For continuous intensity distributions the rate of error decay is proportional to 1/NR, but for piecewise-continuous fields the rate is proportional to 1/square root NR. The surface discretization error causes a small systematic error in the average surface heat flux in a finite-volume CFD/heat transfer calculations. The success of our theory has paved the way to economical error estimation in practically relevant cases.</description><identifier>ISSN: 1040-7790</identifier><identifier>EISSN: 1521-0626</identifier><identifier>DOI: 10.1080/104077999275596</identifier><identifier>CODEN: NHBFEE</identifier><language>eng</language><publisher>Philadelphia, PA: Informa UK Ltd</publisher><subject>Analytical and numerical techniques ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Physics ; Thermal radiation</subject><ispartof>Numerical heat transfer. Part B, Fundamentals, 1999-12, Vol.36 (4), p.387-407</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1999</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-47a22bc52d2c200a259407914d2be56edb519ba2a0a863337a644c0320bb8ba43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/104077999275596$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/104077999275596$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59623,60412</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1206772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VERSTEEG, H. K</creatorcontrib><creatorcontrib>HENSON, J. C</creatorcontrib><creatorcontrib>MALALASEKERA, W</creatorcontrib><title>APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA</title><title>Numerical heat transfer. Part B, Fundamentals</title><description>A method is presented to quantify truncation errors in the discrete transfer method due to discretization of the heat flux integral (hemisphere discretization error) and enclosure boundaries (surface discretization error) for radiation problems involving transparent media. The hemisphere discretization error is generally the larger of the two. Its rate of decay with increasing ray number NR depends strongly on the degree of continuity of the intensity field. For continuous intensity distributions the rate of error decay is proportional to 1/NR, but for piecewise-continuous fields the rate is proportional to 1/square root NR. The surface discretization error causes a small systematic error in the average surface heat flux in a finite-volume CFD/heat transfer calculations. The success of our theory has paved the way to economical error estimation in practically relevant cases.</description><subject>Analytical and numerical techniques</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Physics</subject><subject>Thermal radiation</subject><issn>1040-7790</issn><issn>1521-0626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIsoOKdnrzl4tC5Jk3TdLWzpWujakWWwW0l_QaVbRzvQ_fdGqwgDMZfk5Xvf471nWY8IviA4hRMECXRdz_OwS6nHrqwRohjZkGF2bd6G2gbDW-uu71-hOcQhI6vm67VMduGKqzCJgZAykRsQxkAFAgSCK-BH2535UGIpeQQS_4ssws1cCiWAkjze-EKClVBBsngGay4VQLMBmEDEyrBFyO-tm0o3ffnwfY-trS_UPLCjZBnOeWTnDqMnm7ga4yynuMA5hlBj6pm5PEQKnJWUlUVGkZdprKGeMsdxXM0IyaGDYZZNM02csTUZ6uZd2_ddWaXHrt7r7pwimH5uKr3YlDGeBuOo-1w3VacPed3_ahgy18UmjQ5p9aFqu71-a7umSE_63LTdj3NROj29n4w3-9dz_urtA1jvgoQ</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>VERSTEEG, H. K</creator><creator>HENSON, J. C</creator><creator>MALALASEKERA, W</creator><general>Informa UK Ltd</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19991201</creationdate><title>APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA</title><author>VERSTEEG, H. K ; HENSON, J. C ; MALALASEKERA, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-47a22bc52d2c200a259407914d2be56edb519ba2a0a863337a644c0320bb8ba43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Analytical and numerical techniques</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Physics</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VERSTEEG, H. K</creatorcontrib><creatorcontrib>HENSON, J. C</creatorcontrib><creatorcontrib>MALALASEKERA, W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VERSTEEG, H. K</au><au>HENSON, J. C</au><au>MALALASEKERA, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA</atitle><jtitle>Numerical heat transfer. Part B, Fundamentals</jtitle><date>1999-12-01</date><risdate>1999</risdate><volume>36</volume><issue>4</issue><spage>387</spage><epage>407</epage><pages>387-407</pages><issn>1040-7790</issn><eissn>1521-0626</eissn><coden>NHBFEE</coden><abstract>A method is presented to quantify truncation errors in the discrete transfer method due to discretization of the heat flux integral (hemisphere discretization error) and enclosure boundaries (surface discretization error) for radiation problems involving transparent media. The hemisphere discretization error is generally the larger of the two. Its rate of decay with increasing ray number NR depends strongly on the degree of continuity of the intensity field. For continuous intensity distributions the rate of error decay is proportional to 1/NR, but for piecewise-continuous fields the rate is proportional to 1/square root NR. The surface discretization error causes a small systematic error in the average surface heat flux in a finite-volume CFD/heat transfer calculations. The success of our theory has paved the way to economical error estimation in practically relevant cases.</abstract><cop>Philadelphia, PA</cop><pub>Informa UK Ltd</pub><doi>10.1080/104077999275596</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-7790
ispartof Numerical heat transfer. Part B, Fundamentals, 1999-12, Vol.36 (4), p.387-407
issn 1040-7790
1521-0626
language eng
recordid cdi_pascalfrancis_primary_1206772
source Taylor & Francis Journals Complete
subjects Analytical and numerical techniques
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Heat transfer
Physics
Thermal radiation
title APPROXIMATION ERRORS IN THE HEAT FLUX INTEGRAL OF THE DISCRETE TRANSFER METHOD, PART 1: TRANSPARENT MEDIA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APPROXIMATION%20ERRORS%20IN%20THE%20HEAT%20FLUX%20INTEGRAL%20OF%20THE%20DISCRETE%20TRANSFER%20METHOD,%20PART%201:%20TRANSPARENT%20MEDIA&rft.jtitle=Numerical%20heat%20transfer.%20Part%20B,%20Fundamentals&rft.au=VERSTEEG,%20H.%20K&rft.date=1999-12-01&rft.volume=36&rft.issue=4&rft.spage=387&rft.epage=407&rft.pages=387-407&rft.issn=1040-7790&rft.eissn=1521-0626&rft.coden=NHBFEE&rft_id=info:doi/10.1080/104077999275596&rft_dat=%3Cpascalfrancis_infor%3E1206772%3C/pascalfrancis_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true