λ-Coloring of Graphs

A λ-coloring of a graph G is an assignment of colors from the set 0, ..., λ to the vertices of a graph G such that vertices at distance at most two get different colors and adjacent vertices get colors which are at least two apart. The problem of finding λ-colorings with small or optimal λ arises in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bodlaender, Hans L., Kloks, Ton, Tan, Richard B., van Leeuwen, Jan
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue
container_start_page 395
container_title
container_volume 1770
creator Bodlaender, Hans L.
Kloks, Ton
Tan, Richard B.
van Leeuwen, Jan
description A λ-coloring of a graph G is an assignment of colors from the set 0, ..., λ to the vertices of a graph G such that vertices at distance at most two get different colors and adjacent vertices get colors which are at least two apart. The problem of finding λ-colorings with small or optimal λ arises in the context of radio frequency assignment. We show that the problems of finding the minimum λ for planar graphs, bipartite graphs, chordal graphs and split graphs are NP-Complete. We then give approximation algorithms for λ-coloring and compute upperbounds of the best possible λ for outerplanar graphs, planar graphs, graphs of treewidth k, permutation and split graphs. With the exception of the split graphs, all the above bounds for λ are linear in Δ, the maximum degree of the graph. For split graphs, we give a bound of λ ≤ Δ1.5+2Δ+2 and show that there are split graphs with λ = Ω(Δ1.5). Similar results are also given for variations of the λ-coloring problem.
doi_str_mv 10.1007/3-540-46541-3_33
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1177376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC6414110_300_409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-2db8d1ad0bf2d7b799901de075ab23268362eafd1bf87def38b527d8cb4a51373</originalsourceid><addsrcrecordid>eNqNkM9OwzAMxsNfbRo7InHkwLXDrtO4OaIJBtIkLnCO0jZlg7KWpBx4Nt6BZyLdJs74Yumzf5_sT4gLhBkC8DUlmYREqkxiQoboQEw15xTFraYOxRgVxhlJffQ3U4wS8ViMgSBNNEs6FSOZZZwrySMxDeEVYhECahyL85_vZN42rV9vXi7b-nLhbbcKZ-Kktk1w032fiOe726f5fbJ8XDzMb5ZJSQr6JK2KvEJbQVGnFRestQasHHBmi5RSlZNKna0rLOqcK1dTXmQpV3lZSJshMU3E1c63s6G0Te3tplwH0_n1u_VfBpGZWMW12W4tdMOdzpuibd-CQTBDUoZMfNxsUzFDUhGQe1_ffny60Bs3EKXb9N425cp2vfPBKDlkBYYg0qD_ixEoVMwm1TpiOf0Ce-J2cg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3061677_299_408</pqid></control><display><type>book_chapter</type><title>λ-Coloring of Graphs</title><source>Springer Books</source><creator>Bodlaender, Hans L. ; Kloks, Ton ; Tan, Richard B. ; van Leeuwen, Jan</creator><contributor>Reichel, Horst ; Tison, Sophie ; Reichel, Horst ; Tison, Sophie</contributor><creatorcontrib>Bodlaender, Hans L. ; Kloks, Ton ; Tan, Richard B. ; van Leeuwen, Jan ; Reichel, Horst ; Tison, Sophie ; Reichel, Horst ; Tison, Sophie</creatorcontrib><description>A λ-coloring of a graph G is an assignment of colors from the set 0, ..., λ to the vertices of a graph G such that vertices at distance at most two get different colors and adjacent vertices get colors which are at least two apart. The problem of finding λ-colorings with small or optimal λ arises in the context of radio frequency assignment. We show that the problems of finding the minimum λ for planar graphs, bipartite graphs, chordal graphs and split graphs are NP-Complete. We then give approximation algorithms for λ-coloring and compute upperbounds of the best possible λ for outerplanar graphs, planar graphs, graphs of treewidth k, permutation and split graphs. With the exception of the split graphs, all the above bounds for λ are linear in Δ, the maximum degree of the graph. For split graphs, we give a bound of λ ≤ Δ1.5+2Δ+2 and show that there are split graphs with λ = Ω(Δ1.5). Similar results are also given for variations of the λ-coloring problem.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540671411</identifier><identifier>ISBN: 3540671412</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540465416</identifier><identifier>EISBN: 3540465413</identifier><identifier>DOI: 10.1007/3-540-46541-3_33</identifier><identifier>OCLC: 45578647</identifier><identifier>LCCallNum: QA75.5 -- .S956 2000eb</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Bipartite Graph ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Interval Graph ; Planar Graph ; Polynomial Time Algorithm ; Theoretical computing ; Tree Decomposition</subject><ispartof>Lecture notes in computer science, 2000, Vol.1770, p.395-406</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-2db8d1ad0bf2d7b799901de075ab23268362eafd1bf87def38b527d8cb4a51373</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3061677-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-46541-3_33$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-46541-3_33$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1177376$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Reichel, Horst</contributor><contributor>Tison, Sophie</contributor><contributor>Reichel, Horst</contributor><contributor>Tison, Sophie</contributor><creatorcontrib>Bodlaender, Hans L.</creatorcontrib><creatorcontrib>Kloks, Ton</creatorcontrib><creatorcontrib>Tan, Richard B.</creatorcontrib><creatorcontrib>van Leeuwen, Jan</creatorcontrib><title>λ-Coloring of Graphs</title><title>Lecture notes in computer science</title><description>A λ-coloring of a graph G is an assignment of colors from the set 0, ..., λ to the vertices of a graph G such that vertices at distance at most two get different colors and adjacent vertices get colors which are at least two apart. The problem of finding λ-colorings with small or optimal λ arises in the context of radio frequency assignment. We show that the problems of finding the minimum λ for planar graphs, bipartite graphs, chordal graphs and split graphs are NP-Complete. We then give approximation algorithms for λ-coloring and compute upperbounds of the best possible λ for outerplanar graphs, planar graphs, graphs of treewidth k, permutation and split graphs. With the exception of the split graphs, all the above bounds for λ are linear in Δ, the maximum degree of the graph. For split graphs, we give a bound of λ ≤ Δ1.5+2Δ+2 and show that there are split graphs with λ = Ω(Δ1.5). Similar results are also given for variations of the λ-coloring problem.</description><subject>Applied sciences</subject><subject>Bipartite Graph</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Interval Graph</subject><subject>Planar Graph</subject><subject>Polynomial Time Algorithm</subject><subject>Theoretical computing</subject><subject>Tree Decomposition</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540671411</isbn><isbn>3540671412</isbn><isbn>9783540465416</isbn><isbn>3540465413</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2000</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkM9OwzAMxsNfbRo7InHkwLXDrtO4OaIJBtIkLnCO0jZlg7KWpBx4Nt6BZyLdJs74Yumzf5_sT4gLhBkC8DUlmYREqkxiQoboQEw15xTFraYOxRgVxhlJffQ3U4wS8ViMgSBNNEs6FSOZZZwrySMxDeEVYhECahyL85_vZN42rV9vXi7b-nLhbbcKZ-Kktk1w032fiOe726f5fbJ8XDzMb5ZJSQr6JK2KvEJbQVGnFRestQasHHBmi5RSlZNKna0rLOqcK1dTXmQpV3lZSJshMU3E1c63s6G0Te3tplwH0_n1u_VfBpGZWMW12W4tdMOdzpuibd-CQTBDUoZMfNxsUzFDUhGQe1_ffny60Bs3EKXb9N425cp2vfPBKDlkBYYg0qD_ixEoVMwm1TpiOf0Ce-J2cg</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Bodlaender, Hans L.</creator><creator>Kloks, Ton</creator><creator>Tan, Richard B.</creator><creator>van Leeuwen, Jan</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>20000101</creationdate><title>λ-Coloring of Graphs</title><author>Bodlaender, Hans L. ; Kloks, Ton ; Tan, Richard B. ; van Leeuwen, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-2db8d1ad0bf2d7b799901de075ab23268362eafd1bf87def38b527d8cb4a51373</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Bipartite Graph</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Interval Graph</topic><topic>Planar Graph</topic><topic>Polynomial Time Algorithm</topic><topic>Theoretical computing</topic><topic>Tree Decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodlaender, Hans L.</creatorcontrib><creatorcontrib>Kloks, Ton</creatorcontrib><creatorcontrib>Tan, Richard B.</creatorcontrib><creatorcontrib>van Leeuwen, Jan</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodlaender, Hans L.</au><au>Kloks, Ton</au><au>Tan, Richard B.</au><au>van Leeuwen, Jan</au><au>Reichel, Horst</au><au>Tison, Sophie</au><au>Reichel, Horst</au><au>Tison, Sophie</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>λ-Coloring of Graphs</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2000-01-01</date><risdate>2000</risdate><volume>1770</volume><spage>395</spage><epage>406</epage><pages>395-406</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540671411</isbn><isbn>3540671412</isbn><eisbn>9783540465416</eisbn><eisbn>3540465413</eisbn><abstract>A λ-coloring of a graph G is an assignment of colors from the set 0, ..., λ to the vertices of a graph G such that vertices at distance at most two get different colors and adjacent vertices get colors which are at least two apart. The problem of finding λ-colorings with small or optimal λ arises in the context of radio frequency assignment. We show that the problems of finding the minimum λ for planar graphs, bipartite graphs, chordal graphs and split graphs are NP-Complete. We then give approximation algorithms for λ-coloring and compute upperbounds of the best possible λ for outerplanar graphs, planar graphs, graphs of treewidth k, permutation and split graphs. With the exception of the split graphs, all the above bounds for λ are linear in Δ, the maximum degree of the graph. For split graphs, we give a bound of λ ≤ Δ1.5+2Δ+2 and show that there are split graphs with λ = Ω(Δ1.5). Similar results are also given for variations of the λ-coloring problem.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-46541-3_33</doi><oclcid>45578647</oclcid><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2000, Vol.1770, p.395-406
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1177376
source Springer Books
subjects Applied sciences
Bipartite Graph
Computer science
control theory
systems
Exact sciences and technology
Information retrieval. Graph
Interval Graph
Planar Graph
Polynomial Time Algorithm
Theoretical computing
Tree Decomposition
title λ-Coloring of Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=%CE%BB-Coloring%20of%20Graphs&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Bodlaender,%20Hans%20L.&rft.date=2000-01-01&rft.volume=1770&rft.spage=395&rft.epage=406&rft.pages=395-406&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540671411&rft.isbn_list=3540671412&rft_id=info:doi/10.1007/3-540-46541-3_33&rft_dat=%3Cproquest_pasca%3EEBC6414110_300_409%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540465416&rft.eisbn_list=3540465413&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3061677_299_408&rft_id=info:pmid/&rfr_iscdi=true