Efficient Parallel Adaptive Finite Element Methods Using Self-Scheduling Data and Computations
Parallel adaptive hp finite element methods (FEM), in which both grid size h and local polynomial order p are dynamically altered, are the most effective discretization schemes for a large class of problems. The greatest difficulty in using these methods on parallel computers is the design of effici...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 363 |
---|---|
container_issue | |
container_start_page | 359 |
container_title | |
container_volume | |
creator | Patra, Abani K. Long, Jingping Laszloffy, Andras |
description | Parallel adaptive hp finite element methods (FEM), in which both grid size h and local polynomial order p are dynamically altered, are the most effective discretization schemes for a large class of problems. The greatest difficulty in using these methods on parallel computers is the design of efficient schemes for data storage, access and distribution. We describe here the development of a comprehensive infrastructureAdaptive Finite Elements Application Programmers Interface (AFEAPI), that addresses these concerns. AFEAPI provides a simple base for users to develop their own parallel adaptive hp finite element codes. It is responsible for the parallel mesh database, mesh partitioning and redistribution and optionally solution of the large irregularly sparse systems of linear equations generated in these schemes. Dynamic hashing schemes and B-trees are used to store and access the distributed unstructured data efficiently. |
doi_str_mv | 10.1007/978-3-540-46642-0_52 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1173947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3088931_69_366</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1862-5a7cabaec826696bbb1a1762f922f23abca3b2e5374e83fc5eb46a6db193adf53</originalsourceid><addsrcrecordid>eNo9kE9P3DAQxU3_iRXdb9BDDr262B7Hjo9ou7RIICoB11pjx2YN2STE2Up8-zqAmMto3rx50vwI-cbZD86YPjW6oUBryahUSgrKbC2OyLrIUMQXjX0gK644pwDSfHzfKWWYlp_IigET1GgJX8jKFEvDNTTHZJ3zAysFArSCFfm7jTH5FPq5-oMTdl3oqrMWxzn9C9V56tMcqm0X9ovhKsy7oc3VXU79fXUTukhv_C60h26Zf-KMFfZttRn242HGOQ19_ko-R-xyWL_1E3J3vr3d_KaX178uNmeXdOSNErRG7dFh8I0oDyjnHEeulYhGiCgAnUdwItSgZWgg-jo4qVC1jhvANtZwQr6_5o6YPXZxwt6nbMcp7XF6trw8b6QuNvFqy2XT34fJumF4zJYzu3C3BaIFWzDaF8Z24V6O4C17Gp4OIc82LFe-ICnA_K7AClO2wJrGALfKWFAK_gOZ3YFL</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3088931_69_366</pqid></control><display><type>book_chapter</type><title>Efficient Parallel Adaptive Finite Element Methods Using Self-Scheduling Data and Computations</title><source>Springer Books</source><creator>Patra, Abani K. ; Long, Jingping ; Laszloffy, Andras</creator><contributor>Goos, Gerhard ; Hartmanis, Juris ; van Leeuwen, Jan ; Sinha, Bhabani P. ; Banerjee, Prith ; Prasanna, Viktor K.</contributor><creatorcontrib>Patra, Abani K. ; Long, Jingping ; Laszloffy, Andras ; Goos, Gerhard ; Hartmanis, Juris ; van Leeuwen, Jan ; Sinha, Bhabani P. ; Banerjee, Prith ; Prasanna, Viktor K.</creatorcontrib><description>Parallel adaptive hp finite element methods (FEM), in which both grid size h and local polynomial order p are dynamically altered, are the most effective discretization schemes for a large class of problems. The greatest difficulty in using these methods on parallel computers is the design of efficient schemes for data storage, access and distribution. We describe here the development of a comprehensive infrastructureAdaptive Finite Elements Application Programmers Interface (AFEAPI), that addresses these concerns. AFEAPI provides a simple base for users to develop their own parallel adaptive hp finite element codes. It is responsible for the parallel mesh database, mesh partitioning and redistribution and optionally solution of the large irregularly sparse systems of linear equations generated in these schemes. Dynamic hashing schemes and B-trees are used to store and access the distributed unstructured data efficiently.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540669074</identifier><identifier>ISBN: 3540669078</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540466420</identifier><identifier>EISBN: 3540466428</identifier><identifier>DOI: 10.1007/978-3-540-46642-0_52</identifier><identifier>OCLC: 934981738</identifier><identifier>LCCallNum: QA76.88.H544 1999</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Adaptive Finite Element ; Applied sciences ; Binary Search Tree ; Computer science; control theory; systems ; Dynamic Load Balance ; Exact sciences and technology ; Finite Element Code ; Hash Table ; Simulation ; Software</subject><ispartof>High Performance Computing - HiPC'99, 1999, p.359-363</ispartof><rights>Springer-Verlag Berlin Heidelberg 1999</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3088931-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-46642-0_52$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-46642-0_52$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1173947$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Goos, Gerhard</contributor><contributor>Hartmanis, Juris</contributor><contributor>van Leeuwen, Jan</contributor><contributor>Sinha, Bhabani P.</contributor><contributor>Banerjee, Prith</contributor><contributor>Prasanna, Viktor K.</contributor><creatorcontrib>Patra, Abani K.</creatorcontrib><creatorcontrib>Long, Jingping</creatorcontrib><creatorcontrib>Laszloffy, Andras</creatorcontrib><title>Efficient Parallel Adaptive Finite Element Methods Using Self-Scheduling Data and Computations</title><title>High Performance Computing - HiPC'99</title><description>Parallel adaptive hp finite element methods (FEM), in which both grid size h and local polynomial order p are dynamically altered, are the most effective discretization schemes for a large class of problems. The greatest difficulty in using these methods on parallel computers is the design of efficient schemes for data storage, access and distribution. We describe here the development of a comprehensive infrastructureAdaptive Finite Elements Application Programmers Interface (AFEAPI), that addresses these concerns. AFEAPI provides a simple base for users to develop their own parallel adaptive hp finite element codes. It is responsible for the parallel mesh database, mesh partitioning and redistribution and optionally solution of the large irregularly sparse systems of linear equations generated in these schemes. Dynamic hashing schemes and B-trees are used to store and access the distributed unstructured data efficiently.</description><subject>Adaptive Finite Element</subject><subject>Applied sciences</subject><subject>Binary Search Tree</subject><subject>Computer science; control theory; systems</subject><subject>Dynamic Load Balance</subject><subject>Exact sciences and technology</subject><subject>Finite Element Code</subject><subject>Hash Table</subject><subject>Simulation</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540669074</isbn><isbn>3540669078</isbn><isbn>9783540466420</isbn><isbn>3540466428</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1999</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kE9P3DAQxU3_iRXdb9BDDr262B7Hjo9ou7RIICoB11pjx2YN2STE2Up8-zqAmMto3rx50vwI-cbZD86YPjW6oUBryahUSgrKbC2OyLrIUMQXjX0gK644pwDSfHzfKWWYlp_IigET1GgJX8jKFEvDNTTHZJ3zAysFArSCFfm7jTH5FPq5-oMTdl3oqrMWxzn9C9V56tMcqm0X9ovhKsy7oc3VXU79fXUTukhv_C60h26Zf-KMFfZttRn242HGOQ19_ko-R-xyWL_1E3J3vr3d_KaX178uNmeXdOSNErRG7dFh8I0oDyjnHEeulYhGiCgAnUdwItSgZWgg-jo4qVC1jhvANtZwQr6_5o6YPXZxwt6nbMcp7XF6trw8b6QuNvFqy2XT34fJumF4zJYzu3C3BaIFWzDaF8Z24V6O4C17Gp4OIc82LFe-ICnA_K7AClO2wJrGALfKWFAK_gOZ3YFL</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Patra, Abani K.</creator><creator>Long, Jingping</creator><creator>Laszloffy, Andras</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>1999</creationdate><title>Efficient Parallel Adaptive Finite Element Methods Using Self-Scheduling Data and Computations</title><author>Patra, Abani K. ; Long, Jingping ; Laszloffy, Andras</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1862-5a7cabaec826696bbb1a1762f922f23abca3b2e5374e83fc5eb46a6db193adf53</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adaptive Finite Element</topic><topic>Applied sciences</topic><topic>Binary Search Tree</topic><topic>Computer science; control theory; systems</topic><topic>Dynamic Load Balance</topic><topic>Exact sciences and technology</topic><topic>Finite Element Code</topic><topic>Hash Table</topic><topic>Simulation</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patra, Abani K.</creatorcontrib><creatorcontrib>Long, Jingping</creatorcontrib><creatorcontrib>Laszloffy, Andras</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patra, Abani K.</au><au>Long, Jingping</au><au>Laszloffy, Andras</au><au>Goos, Gerhard</au><au>Hartmanis, Juris</au><au>van Leeuwen, Jan</au><au>Sinha, Bhabani P.</au><au>Banerjee, Prith</au><au>Prasanna, Viktor K.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Efficient Parallel Adaptive Finite Element Methods Using Self-Scheduling Data and Computations</atitle><btitle>High Performance Computing - HiPC'99</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1999</date><risdate>1999</risdate><spage>359</spage><epage>363</epage><pages>359-363</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540669074</isbn><isbn>3540669078</isbn><eisbn>9783540466420</eisbn><eisbn>3540466428</eisbn><abstract>Parallel adaptive hp finite element methods (FEM), in which both grid size h and local polynomial order p are dynamically altered, are the most effective discretization schemes for a large class of problems. The greatest difficulty in using these methods on parallel computers is the design of efficient schemes for data storage, access and distribution. We describe here the development of a comprehensive infrastructureAdaptive Finite Elements Application Programmers Interface (AFEAPI), that addresses these concerns. AFEAPI provides a simple base for users to develop their own parallel adaptive hp finite element codes. It is responsible for the parallel mesh database, mesh partitioning and redistribution and optionally solution of the large irregularly sparse systems of linear equations generated in these schemes. Dynamic hashing schemes and B-trees are used to store and access the distributed unstructured data efficiently.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/978-3-540-46642-0_52</doi><oclcid>934981738</oclcid><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | High Performance Computing - HiPC'99, 1999, p.359-363 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1173947 |
source | Springer Books |
subjects | Adaptive Finite Element Applied sciences Binary Search Tree Computer science control theory systems Dynamic Load Balance Exact sciences and technology Finite Element Code Hash Table Simulation Software |
title | Efficient Parallel Adaptive Finite Element Methods Using Self-Scheduling Data and Computations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A57%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Efficient%20Parallel%20Adaptive%20Finite%20Element%20Methods%20Using%20Self-Scheduling%20Data%20and%20Computations&rft.btitle=High%20Performance%20Computing%20-%20HiPC'99&rft.au=Patra,%20Abani%20K.&rft.date=1999&rft.spage=359&rft.epage=363&rft.pages=359-363&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540669074&rft.isbn_list=3540669078&rft_id=info:doi/10.1007/978-3-540-46642-0_52&rft_dat=%3Cproquest_pasca%3EEBC3088931_69_366%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540466420&rft.eisbn_list=3540466428&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3088931_69_366&rft_id=info:pmid/&rfr_iscdi=true |