Modular Termination Proofs for Prolog with Tabling

Tabling avoids many of the shortcomings of SLD(NF) execution and provides a more flexible and efficient execution mechanism for logic programs. In particular, tabled execution of logic programs terminates more often than execution based on SLD-resolution. One of the few works studying termination un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Verbaeten, Sofie, Sagonas, Konstantinos, De Schreye, Danny
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue
container_start_page 342
container_title
container_volume 1702
creator Verbaeten, Sofie
Sagonas, Konstantinos
De Schreye, Danny
description Tabling avoids many of the shortcomings of SLD(NF) execution and provides a more flexible and efficient execution mechanism for logic programs. In particular, tabled execution of logic programs terminates more often than execution based on SLD-resolution. One of the few works studying termination under a tabled execution mechanism is that of Decorte et al. They introduce and characterise two notions of universal termination of logic programs w.r.t. sets of queries executed under SLG-resolution, using the left-to-right selection rule; namely the notion of quasi-termination and the (stronger) notion of LG-termination. This paper extends the results of Decorte et al in two ways: (1) we consider a mix of tabled and Prolog execution, and (2) besides a characterisation of the two notions of universal termination under such a mixed execution, we also give modular termination conditions. From both practical and efficiency considerations, it is important to allow tabled and non-tabled predicates to be freely intermixed. This motivates the first extension. Concerning the second extension, it was already noted in the literature in the context of termination under SLD-resolution (by e.g. Apt and Pedreschi), that it is important for programming in the large to have modular termination proofs, i.e. proofs that are capable of combining termination proofs of separate programs to obtain termination proofs of combined programs.
doi_str_mv 10.1007/10704567_21
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1170911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3087480_27_352</sourcerecordid><originalsourceid>FETCH-LOGICAL-p327t-b6b8c83edd4d55463bef95586f9e5efc48c1bf299ad315230abf80d26c9ddfd53</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhM1TRKUn_kAOXDgEbK-fR4R4SUVwKGfLie02kMbFToX496RqhdjD7krzaTQahC4IviYYyxuCJWZcSEPJAZpqqYAzzBQRjB-igghCKgCmj_40IcYFx6jAgGmlJYNTVOgRkUorOEPTnD_wOEC5Alwg-hLdprOpnPu0ans7tLEv31KMIZchpu3bxUX53Q7Lcm7rru0X5-gk2C776f5O0PvD_fzuqZq9Pj7f3c6qNVA5VLWoVaPAO8cc50xA7YPmXImgPfehYaohdaBaWweEU8C2Dgo7KhrtXHAcJuhy57u2ubFdSLZv2mzWqV3Z9GMIkVgTMmJXOyyPSr_wydQxfmZDsNlWaP5VOLKwt0zxa-PzYPwWbnw_JNs1S7sefMoGsJJMYUOlgTHZL18XbRM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3087480_27_352</pqid></control><display><type>book_chapter</type><title>Modular Termination Proofs for Prolog with Tabling</title><source>Springer Books</source><creator>Verbaeten, Sofie ; Sagonas, Konstantinos ; De Schreye, Danny</creator><contributor>Nadathur, Gopalan ; Hartmanis, Juris ; van Leeuwen, Jan ; Nadathur, Gopalan</contributor><creatorcontrib>Verbaeten, Sofie ; Sagonas, Konstantinos ; De Schreye, Danny ; Nadathur, Gopalan ; Hartmanis, Juris ; van Leeuwen, Jan ; Nadathur, Gopalan</creatorcontrib><description>Tabling avoids many of the shortcomings of SLD(NF) execution and provides a more flexible and efficient execution mechanism for logic programs. In particular, tabled execution of logic programs terminates more often than execution based on SLD-resolution. One of the few works studying termination under a tabled execution mechanism is that of Decorte et al. They introduce and characterise two notions of universal termination of logic programs w.r.t. sets of queries executed under SLG-resolution, using the left-to-right selection rule; namely the notion of quasi-termination and the (stronger) notion of LG-termination. This paper extends the results of Decorte et al in two ways: (1) we consider a mix of tabled and Prolog execution, and (2) besides a characterisation of the two notions of universal termination under such a mixed execution, we also give modular termination conditions. From both practical and efficiency considerations, it is important to allow tabled and non-tabled predicates to be freely intermixed. This motivates the first extension. Concerning the second extension, it was already noted in the literature in the context of termination under SLD-resolution (by e.g. Apt and Pedreschi), that it is important for programming in the large to have modular termination proofs, i.e. proofs that are capable of combining termination proofs of separate programs to obtain termination proofs of combined programs.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540665403</identifier><identifier>ISBN: 3540665404</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540481645</identifier><identifier>EISBN: 3540481648</identifier><identifier>DOI: 10.1007/10704567_21</identifier><identifier>OCLC: 934978983</identifier><identifier>LCCallNum: QA75.5-76.95</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Level Mapping ; Logic Program ; Logic Programming ; Parse Tree ; Predicate Symbol ; Programming theory ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 1999, Vol.1702, p.342-359</ispartof><rights>Springer-Verlag Berlin Heidelberg 1999</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3087480-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/10704567_21$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/10704567_21$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1170911$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Nadathur, Gopalan</contributor><contributor>Hartmanis, Juris</contributor><contributor>van Leeuwen, Jan</contributor><contributor>Nadathur, Gopalan</contributor><creatorcontrib>Verbaeten, Sofie</creatorcontrib><creatorcontrib>Sagonas, Konstantinos</creatorcontrib><creatorcontrib>De Schreye, Danny</creatorcontrib><title>Modular Termination Proofs for Prolog with Tabling</title><title>Lecture notes in computer science</title><description>Tabling avoids many of the shortcomings of SLD(NF) execution and provides a more flexible and efficient execution mechanism for logic programs. In particular, tabled execution of logic programs terminates more often than execution based on SLD-resolution. One of the few works studying termination under a tabled execution mechanism is that of Decorte et al. They introduce and characterise two notions of universal termination of logic programs w.r.t. sets of queries executed under SLG-resolution, using the left-to-right selection rule; namely the notion of quasi-termination and the (stronger) notion of LG-termination. This paper extends the results of Decorte et al in two ways: (1) we consider a mix of tabled and Prolog execution, and (2) besides a characterisation of the two notions of universal termination under such a mixed execution, we also give modular termination conditions. From both practical and efficiency considerations, it is important to allow tabled and non-tabled predicates to be freely intermixed. This motivates the first extension. Concerning the second extension, it was already noted in the literature in the context of termination under SLD-resolution (by e.g. Apt and Pedreschi), that it is important for programming in the large to have modular termination proofs, i.e. proofs that are capable of combining termination proofs of separate programs to obtain termination proofs of combined programs.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Level Mapping</subject><subject>Logic Program</subject><subject>Logic Programming</subject><subject>Parse Tree</subject><subject>Predicate Symbol</subject><subject>Programming theory</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540665403</isbn><isbn>3540665404</isbn><isbn>9783540481645</isbn><isbn>3540481648</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1999</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkEtPwzAQhM1TRKUn_kAOXDgEbK-fR4R4SUVwKGfLie02kMbFToX496RqhdjD7krzaTQahC4IviYYyxuCJWZcSEPJAZpqqYAzzBQRjB-igghCKgCmj_40IcYFx6jAgGmlJYNTVOgRkUorOEPTnD_wOEC5Alwg-hLdprOpnPu0ans7tLEv31KMIZchpu3bxUX53Q7Lcm7rru0X5-gk2C776f5O0PvD_fzuqZq9Pj7f3c6qNVA5VLWoVaPAO8cc50xA7YPmXImgPfehYaohdaBaWweEU8C2Dgo7KhrtXHAcJuhy57u2ubFdSLZv2mzWqV3Z9GMIkVgTMmJXOyyPSr_wydQxfmZDsNlWaP5VOLKwt0zxa-PzYPwWbnw_JNs1S7sefMoGsJJMYUOlgTHZL18XbRM</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Verbaeten, Sofie</creator><creator>Sagonas, Konstantinos</creator><creator>De Schreye, Danny</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>1999</creationdate><title>Modular Termination Proofs for Prolog with Tabling</title><author>Verbaeten, Sofie ; Sagonas, Konstantinos ; De Schreye, Danny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p327t-b6b8c83edd4d55463bef95586f9e5efc48c1bf299ad315230abf80d26c9ddfd53</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Level Mapping</topic><topic>Logic Program</topic><topic>Logic Programming</topic><topic>Parse Tree</topic><topic>Predicate Symbol</topic><topic>Programming theory</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verbaeten, Sofie</creatorcontrib><creatorcontrib>Sagonas, Konstantinos</creatorcontrib><creatorcontrib>De Schreye, Danny</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verbaeten, Sofie</au><au>Sagonas, Konstantinos</au><au>De Schreye, Danny</au><au>Nadathur, Gopalan</au><au>Hartmanis, Juris</au><au>van Leeuwen, Jan</au><au>Nadathur, Gopalan</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Modular Termination Proofs for Prolog with Tabling</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1999</date><risdate>1999</risdate><volume>1702</volume><spage>342</spage><epage>359</epage><pages>342-359</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540665403</isbn><isbn>3540665404</isbn><eisbn>9783540481645</eisbn><eisbn>3540481648</eisbn><abstract>Tabling avoids many of the shortcomings of SLD(NF) execution and provides a more flexible and efficient execution mechanism for logic programs. In particular, tabled execution of logic programs terminates more often than execution based on SLD-resolution. One of the few works studying termination under a tabled execution mechanism is that of Decorte et al. They introduce and characterise two notions of universal termination of logic programs w.r.t. sets of queries executed under SLG-resolution, using the left-to-right selection rule; namely the notion of quasi-termination and the (stronger) notion of LG-termination. This paper extends the results of Decorte et al in two ways: (1) we consider a mix of tabled and Prolog execution, and (2) besides a characterisation of the two notions of universal termination under such a mixed execution, we also give modular termination conditions. From both practical and efficiency considerations, it is important to allow tabled and non-tabled predicates to be freely intermixed. This motivates the first extension. Concerning the second extension, it was already noted in the literature in the context of termination under SLD-resolution (by e.g. Apt and Pedreschi), that it is important for programming in the large to have modular termination proofs, i.e. proofs that are capable of combining termination proofs of separate programs to obtain termination proofs of combined programs.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/10704567_21</doi><oclcid>934978983</oclcid><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 1999, Vol.1702, p.342-359
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1170911
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Level Mapping
Logic Program
Logic Programming
Parse Tree
Predicate Symbol
Programming theory
Theoretical computing
title Modular Termination Proofs for Prolog with Tabling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Modular%20Termination%20Proofs%20for%20Prolog%20with%20Tabling&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Verbaeten,%20Sofie&rft.date=1999&rft.volume=1702&rft.spage=342&rft.epage=359&rft.pages=342-359&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540665403&rft.isbn_list=3540665404&rft_id=info:doi/10.1007/10704567_21&rft_dat=%3Cproquest_pasca%3EEBC3087480_27_352%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540481645&rft.eisbn_list=3540481648&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3087480_27_352&rft_id=info:pmid/&rfr_iscdi=true