Evoked Potential Enhancement Using a Neurophysiologically-based Model

Objective: Single trial evoked potentials (EP) are generally obscured by the much larger spontaneous or background electroencephalogram (EEG). A novel method was developed to enhance single trial EPs. The potential of this approach was explored using actual flash evoked visual EPs. Method: The basic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods of information in medicine 2001-01, Vol.40 (4), p.338-345
Hauptverfasser: Jansen, B. H., Balaji Kavaipatti, A., Markusson, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345
container_issue 4
container_start_page 338
container_title Methods of information in medicine
container_volume 40
creator Jansen, B. H.
Balaji Kavaipatti, A.
Markusson, O.
description Objective: Single trial evoked potentials (EP) are generally obscured by the much larger spontaneous or background electroencephalogram (EEG). A novel method was developed to enhance single trial EPs. The potential of this approach was explored using actual flash evoked visual EPs. Method: The basic procedure is a variant of the adaptive filtering approach. At the core of our method is a mathematical, but neurophysiologically-realistic, nonlinear model of the cortical structures involved in generating EEG and EP activity. The model parameters are adjusted by a genetic algorithm in such a way that the model output resembles the actually observed pre-stimulus EEG activity. When post-stimulus EEG is passed through the inverse model, enhancement of the single trial EP should, theoretically, occur. Results: Evidence was found that, in case of visual evoked potentials obtained by flashing light through closed eyelids, alpha activity continues to around 150 ms post-stimulus, at which point a low frequency potential arises, cresting 100 ms later and disappearing after another 100 ms or so. Also, it was found that an individual’s response varies considerably from trial to trial. Conclusion: The inverse modeling approach presented here is effective at enhancing single trial EP activity. One potential application is to distinguish trials that contain a response from those that do not, which could result in improved ensemble averages.
doi_str_mv 10.1055/s-0038-1634430
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1136992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71181649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660t-2b728d295474efd4f7eb499412321687625fd107d1ba8c44ce057fa5264de4e43</originalsourceid><addsrcrecordid>eNrFkUtv1DAUhSMEokNhyxLNArFLsR0_kiWqpoBUHgsqsbMc52biksTB1-lo5rew4Kfi0UTQTddIlizL3z0-PifLXlJyQYkQbzEnpChzKgvOC_IoWzFBaa6I-P44WxHCZE6ZImfZM8RbQkhZEv40O6NUCFZwtco2mzv_A5r1Vx9hjM70683YmdHCkI7rG3Tjdm3Wn2EOfur26Hzvt86avt_ntcE0-Mk30D_PnrSmR3ix7OfZzdXm2-WH_PrL-4-X765zKyWJOasVKxtWCa44tA1vFdS8qjhlBaOyVJKJtqFENbQ2peXcAhGqNYJJ3gAHXpxnb066U_A_Z8CoB4cW-t6M4GfUitKSSl4l8OIE2uARA7R6Cm4wYa8p0cfgNOpjcHoJLg28WpTneoDmH74klYDXC2Aw_b8NKSSH97hCVhVLWH7CYudShvrWz2FMkTz87u8Tj7YzMZoZwl_NLsZJ73Y7fe-ugeMazNYc3Ah6hhoCOttFfQAXExhcm5rURh_0ALHzDWrrx2O5qE2wnbuDKcDg5kE7xBk0TmBT70lznNEGN0VNhdTY-V1yMPTJ4q__bFER-bC9PwzlA0I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71181649</pqid></control><display><type>article</type><title>Evoked Potential Enhancement Using a Neurophysiologically-based Model</title><source>MEDLINE</source><source>Thieme Connect Journals</source><creator>Jansen, B. H. ; Balaji Kavaipatti, A. ; Markusson, O.</creator><creatorcontrib>Jansen, B. H. ; Balaji Kavaipatti, A. ; Markusson, O.</creatorcontrib><description>Objective: Single trial evoked potentials (EP) are generally obscured by the much larger spontaneous or background electroencephalogram (EEG). A novel method was developed to enhance single trial EPs. The potential of this approach was explored using actual flash evoked visual EPs. Method: The basic procedure is a variant of the adaptive filtering approach. At the core of our method is a mathematical, but neurophysiologically-realistic, nonlinear model of the cortical structures involved in generating EEG and EP activity. The model parameters are adjusted by a genetic algorithm in such a way that the model output resembles the actually observed pre-stimulus EEG activity. When post-stimulus EEG is passed through the inverse model, enhancement of the single trial EP should, theoretically, occur. Results: Evidence was found that, in case of visual evoked potentials obtained by flashing light through closed eyelids, alpha activity continues to around 150 ms post-stimulus, at which point a low frequency potential arises, cresting 100 ms later and disappearing after another 100 ms or so. Also, it was found that an individual’s response varies considerably from trial to trial. Conclusion: The inverse modeling approach presented here is effective at enhancing single trial EP activity. One potential application is to distinguish trials that contain a response from those that do not, which could result in improved ensemble averages.</description><identifier>ISSN: 0026-1270</identifier><identifier>EISSN: 2511-705X</identifier><identifier>DOI: 10.1055/s-0038-1634430</identifier><identifier>PMID: 11552347</identifier><identifier>CODEN: MIMCAI</identifier><language>eng</language><publisher>Stuttgart: Schattauer Verlag für Medizin und Naturwissenschaften</publisher><subject>Adult ; Algorithms ; Biological and medical sciences ; Computer Assisted; Models ; Computerized, statistical medical data processing and models in biomedicine ; Electrodiagnosis. Electric activity recording ; Electroencephalography - methods ; Evoked Potentials ; Evoked Potentials, Visual ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Male ; Medical management aid. Diagnosis aid ; Medical sciences ; Models, Neurological ; Nerve Net ; Nervous system ; Neural Networks; Algorithms ; Nonlinear Dynamics ; Nonlinear; Models ; Original Article ; Signal Processing, Computer-Assisted ; Visual; Signal Processing</subject><ispartof>Methods of information in medicine, 2001-01, Vol.40 (4), p.338-345</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c660t-2b728d295474efd4f7eb499412321687625fd107d1ba8c44ce057fa5264de4e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0038-1634430.pdf$$EPDF$$P50$$Gthieme$$H</linktopdf><linktohtml>$$Uhttps://www.thieme-connect.de/products/ejournals/html/10.1055/s-0038-1634430$$EHTML$$P50$$Gthieme$$H</linktohtml><link.rule.ids>314,780,784,3017,3018,27924,27925,54559,54560</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1136992$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11552347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jansen, B. H.</creatorcontrib><creatorcontrib>Balaji Kavaipatti, A.</creatorcontrib><creatorcontrib>Markusson, O.</creatorcontrib><title>Evoked Potential Enhancement Using a Neurophysiologically-based Model</title><title>Methods of information in medicine</title><addtitle>Methods Inf Med</addtitle><description>Objective: Single trial evoked potentials (EP) are generally obscured by the much larger spontaneous or background electroencephalogram (EEG). A novel method was developed to enhance single trial EPs. The potential of this approach was explored using actual flash evoked visual EPs. Method: The basic procedure is a variant of the adaptive filtering approach. At the core of our method is a mathematical, but neurophysiologically-realistic, nonlinear model of the cortical structures involved in generating EEG and EP activity. The model parameters are adjusted by a genetic algorithm in such a way that the model output resembles the actually observed pre-stimulus EEG activity. When post-stimulus EEG is passed through the inverse model, enhancement of the single trial EP should, theoretically, occur. Results: Evidence was found that, in case of visual evoked potentials obtained by flashing light through closed eyelids, alpha activity continues to around 150 ms post-stimulus, at which point a low frequency potential arises, cresting 100 ms later and disappearing after another 100 ms or so. Also, it was found that an individual’s response varies considerably from trial to trial. Conclusion: The inverse modeling approach presented here is effective at enhancing single trial EP activity. One potential application is to distinguish trials that contain a response from those that do not, which could result in improved ensemble averages.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Computer Assisted; Models</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Electrodiagnosis. Electric activity recording</subject><subject>Electroencephalography - methods</subject><subject>Evoked Potentials</subject><subject>Evoked Potentials, Visual</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Male</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Models, Neurological</subject><subject>Nerve Net</subject><subject>Nervous system</subject><subject>Neural Networks; Algorithms</subject><subject>Nonlinear Dynamics</subject><subject>Nonlinear; Models</subject><subject>Original Article</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Visual; Signal Processing</subject><issn>0026-1270</issn><issn>2511-705X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNrFkUtv1DAUhSMEokNhyxLNArFLsR0_kiWqpoBUHgsqsbMc52biksTB1-lo5rew4Kfi0UTQTddIlizL3z0-PifLXlJyQYkQbzEnpChzKgvOC_IoWzFBaa6I-P44WxHCZE6ZImfZM8RbQkhZEv40O6NUCFZwtco2mzv_A5r1Vx9hjM70683YmdHCkI7rG3Tjdm3Wn2EOfur26Hzvt86avt_ntcE0-Mk30D_PnrSmR3ix7OfZzdXm2-WH_PrL-4-X765zKyWJOasVKxtWCa44tA1vFdS8qjhlBaOyVJKJtqFENbQ2peXcAhGqNYJJ3gAHXpxnb066U_A_Z8CoB4cW-t6M4GfUitKSSl4l8OIE2uARA7R6Cm4wYa8p0cfgNOpjcHoJLg28WpTneoDmH74klYDXC2Aw_b8NKSSH97hCVhVLWH7CYudShvrWz2FMkTz87u8Tj7YzMZoZwl_NLsZJ73Y7fe-ugeMazNYc3Ah6hhoCOttFfQAXExhcm5rURh_0ALHzDWrrx2O5qE2wnbuDKcDg5kE7xBk0TmBT70lznNEGN0VNhdTY-V1yMPTJ4q__bFER-bC9PwzlA0I</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Jansen, B. H.</creator><creator>Balaji Kavaipatti, A.</creator><creator>Markusson, O.</creator><general>Schattauer Verlag für Medizin und Naturwissenschaften</general><general>Schattauer GmbH</general><general>Schattauer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010101</creationdate><title>Evoked Potential Enhancement Using a Neurophysiologically-based Model</title><author>Jansen, B. H. ; Balaji Kavaipatti, A. ; Markusson, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660t-2b728d295474efd4f7eb499412321687625fd107d1ba8c44ce057fa5264de4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Computer Assisted; Models</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Electrodiagnosis. Electric activity recording</topic><topic>Electroencephalography - methods</topic><topic>Evoked Potentials</topic><topic>Evoked Potentials, Visual</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Male</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Models, Neurological</topic><topic>Nerve Net</topic><topic>Nervous system</topic><topic>Neural Networks; Algorithms</topic><topic>Nonlinear Dynamics</topic><topic>Nonlinear; Models</topic><topic>Original Article</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Visual; Signal Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jansen, B. H.</creatorcontrib><creatorcontrib>Balaji Kavaipatti, A.</creatorcontrib><creatorcontrib>Markusson, O.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Methods of information in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jansen, B. H.</au><au>Balaji Kavaipatti, A.</au><au>Markusson, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evoked Potential Enhancement Using a Neurophysiologically-based Model</atitle><jtitle>Methods of information in medicine</jtitle><addtitle>Methods Inf Med</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>40</volume><issue>4</issue><spage>338</spage><epage>345</epage><pages>338-345</pages><issn>0026-1270</issn><eissn>2511-705X</eissn><coden>MIMCAI</coden><abstract>Objective: Single trial evoked potentials (EP) are generally obscured by the much larger spontaneous or background electroencephalogram (EEG). A novel method was developed to enhance single trial EPs. The potential of this approach was explored using actual flash evoked visual EPs. Method: The basic procedure is a variant of the adaptive filtering approach. At the core of our method is a mathematical, but neurophysiologically-realistic, nonlinear model of the cortical structures involved in generating EEG and EP activity. The model parameters are adjusted by a genetic algorithm in such a way that the model output resembles the actually observed pre-stimulus EEG activity. When post-stimulus EEG is passed through the inverse model, enhancement of the single trial EP should, theoretically, occur. Results: Evidence was found that, in case of visual evoked potentials obtained by flashing light through closed eyelids, alpha activity continues to around 150 ms post-stimulus, at which point a low frequency potential arises, cresting 100 ms later and disappearing after another 100 ms or so. Also, it was found that an individual’s response varies considerably from trial to trial. Conclusion: The inverse modeling approach presented here is effective at enhancing single trial EP activity. One potential application is to distinguish trials that contain a response from those that do not, which could result in improved ensemble averages.</abstract><cop>Stuttgart</cop><pub>Schattauer Verlag für Medizin und Naturwissenschaften</pub><pmid>11552347</pmid><doi>10.1055/s-0038-1634430</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-1270
ispartof Methods of information in medicine, 2001-01, Vol.40 (4), p.338-345
issn 0026-1270
2511-705X
language eng
recordid cdi_pascalfrancis_primary_1136992
source MEDLINE; Thieme Connect Journals
subjects Adult
Algorithms
Biological and medical sciences
Computer Assisted
Models
Computerized, statistical medical data processing and models in biomedicine
Electrodiagnosis. Electric activity recording
Electroencephalography - methods
Evoked Potentials
Evoked Potentials, Visual
Humans
Investigative techniques, diagnostic techniques (general aspects)
Male
Medical management aid. Diagnosis aid
Medical sciences
Models, Neurological
Nerve Net
Nervous system
Neural Networks
Algorithms
Nonlinear Dynamics
Nonlinear
Models
Original Article
Signal Processing, Computer-Assisted
Visual
Signal Processing
title Evoked Potential Enhancement Using a Neurophysiologically-based Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evoked%20Potential%20Enhancement%20Using%20a%20Neurophysiologically-based%20Model&rft.jtitle=Methods%20of%20information%20in%20medicine&rft.au=Jansen,%20B.%20H.&rft.date=2001-01-01&rft.volume=40&rft.issue=4&rft.spage=338&rft.epage=345&rft.pages=338-345&rft.issn=0026-1270&rft.eissn=2511-705X&rft.coden=MIMCAI&rft_id=info:doi/10.1055/s-0038-1634430&rft_dat=%3Cproquest_pasca%3E71181649%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71181649&rft_id=info:pmid/11552347&rfr_iscdi=true