Scaling laws for modeling large superconducting solenoids
The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2001-03, Vol.11 (1), p.2292-2295 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2295 |
---|---|
container_issue | 1 |
container_start_page | 2292 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 11 |
creator | Green, M.A. McInturff, A.D. |
description | The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discuses how one can model the stress, strain and quench behavior of these large solenoid sections by building one-third to one-half scale models of the magnets. The cost of building and engineering the scale model magnets is a small fraction of the cost of fabricating a full-scale magnet section. This report discusses the limitations of the scaling approach as well as the types of superconducting solenoids for which the modeling technique is suitable. |
doi_str_mv | 10.1109/77.920318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_1042662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>920318</ieee_id><sourcerecordid>2631216731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-c26abd8084f17ebdc3f74e65709ee022983250779ca3688a82eed6f3f98b84a03</originalsourceid><addsrcrecordid>eNqF0UtLAzEQB_AgCtbqwaunIqJ42Jr34yjFFxQ8qOclzU7Klu2mJl3Eb2_KLiIe9JQw-eUPM4PQKcFTQrC5UWpqKGZE76EREUIXVBCxn-9YkEJTyg7RUUorjAnXXIyQeXG2qdvlpLEfaeJDnKxDBUMlLmGSug1EF9qqc9tdNYUG2lBX6RgdeNskOBnOMXq7v3udPRbz54en2e28cJyRbeGotItKY809UbCoHPOKgxQKGwBMqdGMCqyUcZZJra2mAJX0zBu90NxiNkZXfe4mhvcO0rZc18lB09gWQpdKQ7gUUlOT5eWfkmpJFBH4fyhNniAVGZ7_gqvQxTa3WxrDKOGY7tKue-RiSCmCLzexXtv4WRJc7pZSKlX2S8n2Ygi0KQ_eR9u6Ov34wKmUNLOzntUA8P06ZHwBy6KRdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993214020</pqid></control><display><type>article</type><title>Scaling laws for modeling large superconducting solenoids</title><source>IEEE Electronic Library (IEL)</source><creator>Green, M.A. ; McInturff, A.D.</creator><creatorcontrib>Green, M.A. ; McInturff, A.D.</creatorcontrib><description>The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discuses how one can model the stress, strain and quench behavior of these large solenoid sections by building one-third to one-half scale models of the magnets. The cost of building and engineering the scale model magnets is a small fraction of the cost of fabricating a full-scale magnet section. This report discusses the limitations of the scaling approach as well as the types of superconducting solenoids for which the modeling technique is suitable.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.920318</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channels ; Conducting materials ; Cooling ; Cost engineering ; Costs ; Electrical engineering. Electrical power engineering ; Electromagnets ; Equations ; Exact sciences and technology ; Magnets ; Manufacturing engineering ; Mesons ; Meters ; Scale models ; Solenoids ; Stress ; Superconducting coils ; Superconducting magnets ; Superconducting materials ; Superconductivity ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2001-03, Vol.11 (1), p.2292-2295</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-c26abd8084f17ebdc3f74e65709ee022983250779ca3688a82eed6f3f98b84a03</citedby><cites>FETCH-LOGICAL-c431t-c26abd8084f17ebdc3f74e65709ee022983250779ca3688a82eed6f3f98b84a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/920318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/920318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1042662$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Green, M.A.</creatorcontrib><creatorcontrib>McInturff, A.D.</creatorcontrib><title>Scaling laws for modeling large superconducting solenoids</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discuses how one can model the stress, strain and quench behavior of these large solenoid sections by building one-third to one-half scale models of the magnets. The cost of building and engineering the scale model magnets is a small fraction of the cost of fabricating a full-scale magnet section. This report discusses the limitations of the scaling approach as well as the types of superconducting solenoids for which the modeling technique is suitable.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Conducting materials</subject><subject>Cooling</subject><subject>Cost engineering</subject><subject>Costs</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Magnets</subject><subject>Manufacturing engineering</subject><subject>Mesons</subject><subject>Meters</subject><subject>Scale models</subject><subject>Solenoids</subject><subject>Stress</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>Superconducting materials</subject><subject>Superconductivity</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLAzEQB_AgCtbqwaunIqJ42Jr34yjFFxQ8qOclzU7Klu2mJl3Eb2_KLiIe9JQw-eUPM4PQKcFTQrC5UWpqKGZE76EREUIXVBCxn-9YkEJTyg7RUUorjAnXXIyQeXG2qdvlpLEfaeJDnKxDBUMlLmGSug1EF9qqc9tdNYUG2lBX6RgdeNskOBnOMXq7v3udPRbz54en2e28cJyRbeGotItKY809UbCoHPOKgxQKGwBMqdGMCqyUcZZJra2mAJX0zBu90NxiNkZXfe4mhvcO0rZc18lB09gWQpdKQ7gUUlOT5eWfkmpJFBH4fyhNniAVGZ7_gqvQxTa3WxrDKOGY7tKue-RiSCmCLzexXtv4WRJc7pZSKlX2S8n2Ygi0KQ_eR9u6Ov34wKmUNLOzntUA8P06ZHwBy6KRdg</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Green, M.A.</creator><creator>McInturff, A.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010301</creationdate><title>Scaling laws for modeling large superconducting solenoids</title><author>Green, M.A. ; McInturff, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-c26abd8084f17ebdc3f74e65709ee022983250779ca3688a82eed6f3f98b84a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Conducting materials</topic><topic>Cooling</topic><topic>Cost engineering</topic><topic>Costs</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Magnets</topic><topic>Manufacturing engineering</topic><topic>Mesons</topic><topic>Meters</topic><topic>Scale models</topic><topic>Solenoids</topic><topic>Stress</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>Superconducting materials</topic><topic>Superconductivity</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Green, M.A.</creatorcontrib><creatorcontrib>McInturff, A.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Green, M.A.</au><au>McInturff, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling laws for modeling large superconducting solenoids</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2001-03-01</date><risdate>2001</risdate><volume>11</volume><issue>1</issue><spage>2292</spage><epage>2295</epage><pages>2292-2295</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discuses how one can model the stress, strain and quench behavior of these large solenoid sections by building one-third to one-half scale models of the magnets. The cost of building and engineering the scale model magnets is a small fraction of the cost of fabricating a full-scale magnet section. This report discusses the limitations of the scaling approach as well as the types of superconducting solenoids for which the modeling technique is suitable.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/77.920318</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2001-03, Vol.11 (1), p.2292-2295 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_pascalfrancis_primary_1042662 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Channels Conducting materials Cooling Cost engineering Costs Electrical engineering. Electrical power engineering Electromagnets Equations Exact sciences and technology Magnets Manufacturing engineering Mesons Meters Scale models Solenoids Stress Superconducting coils Superconducting magnets Superconducting materials Superconductivity Various equipment and components |
title | Scaling laws for modeling large superconducting solenoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20laws%20for%20modeling%20large%20superconducting%20solenoids&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Green,%20M.A.&rft.date=2001-03-01&rft.volume=11&rft.issue=1&rft.spage=2292&rft.epage=2295&rft.pages=2292-2295&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.920318&rft_dat=%3Cproquest_RIE%3E2631216731%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993214020&rft_id=info:pmid/&rft_ieee_id=920318&rfr_iscdi=true |