Scaling laws for modeling large superconducting solenoids

The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2001-03, Vol.11 (1), p.2292-2295
Hauptverfasser: Green, M.A., McInturff, A.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2295
container_issue 1
container_start_page 2292
container_title IEEE transactions on applied superconductivity
container_volume 11
creator Green, M.A.
McInturff, A.D.
description The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discuses how one can model the stress, strain and quench behavior of these large solenoid sections by building one-third to one-half scale models of the magnets. The cost of building and engineering the scale model magnets is a small fraction of the cost of fabricating a full-scale magnet section. This report discusses the limitations of the scaling approach as well as the types of superconducting solenoids for which the modeling technique is suitable.
doi_str_mv 10.1109/77.920318
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_1042662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>920318</ieee_id><sourcerecordid>2631216731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-c26abd8084f17ebdc3f74e65709ee022983250779ca3688a82eed6f3f98b84a03</originalsourceid><addsrcrecordid>eNqF0UtLAzEQB_AgCtbqwaunIqJ42Jr34yjFFxQ8qOclzU7Klu2mJl3Eb2_KLiIe9JQw-eUPM4PQKcFTQrC5UWpqKGZE76EREUIXVBCxn-9YkEJTyg7RUUorjAnXXIyQeXG2qdvlpLEfaeJDnKxDBUMlLmGSug1EF9qqc9tdNYUG2lBX6RgdeNskOBnOMXq7v3udPRbz54en2e28cJyRbeGotItKY809UbCoHPOKgxQKGwBMqdGMCqyUcZZJra2mAJX0zBu90NxiNkZXfe4mhvcO0rZc18lB09gWQpdKQ7gUUlOT5eWfkmpJFBH4fyhNniAVGZ7_gqvQxTa3WxrDKOGY7tKue-RiSCmCLzexXtv4WRJc7pZSKlX2S8n2Ygi0KQ_eR9u6Ov34wKmUNLOzntUA8P06ZHwBy6KRdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993214020</pqid></control><display><type>article</type><title>Scaling laws for modeling large superconducting solenoids</title><source>IEEE Electronic Library (IEL)</source><creator>Green, M.A. ; McInturff, A.D.</creator><creatorcontrib>Green, M.A. ; McInturff, A.D.</creatorcontrib><description>The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discuses how one can model the stress, strain and quench behavior of these large solenoid sections by building one-third to one-half scale models of the magnets. The cost of building and engineering the scale model magnets is a small fraction of the cost of fabricating a full-scale magnet section. This report discusses the limitations of the scaling approach as well as the types of superconducting solenoids for which the modeling technique is suitable.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.920318</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Channels ; Conducting materials ; Cooling ; Cost engineering ; Costs ; Electrical engineering. Electrical power engineering ; Electromagnets ; Equations ; Exact sciences and technology ; Magnets ; Manufacturing engineering ; Mesons ; Meters ; Scale models ; Solenoids ; Stress ; Superconducting coils ; Superconducting magnets ; Superconducting materials ; Superconductivity ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2001-03, Vol.11 (1), p.2292-2295</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-c26abd8084f17ebdc3f74e65709ee022983250779ca3688a82eed6f3f98b84a03</citedby><cites>FETCH-LOGICAL-c431t-c26abd8084f17ebdc3f74e65709ee022983250779ca3688a82eed6f3f98b84a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/920318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/920318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1042662$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Green, M.A.</creatorcontrib><creatorcontrib>McInturff, A.D.</creatorcontrib><title>Scaling laws for modeling large superconducting solenoids</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discuses how one can model the stress, strain and quench behavior of these large solenoid sections by building one-third to one-half scale models of the magnets. The cost of building and engineering the scale model magnets is a small fraction of the cost of fabricating a full-scale magnet section. This report discusses the limitations of the scaling approach as well as the types of superconducting solenoids for which the modeling technique is suitable.</description><subject>Applied sciences</subject><subject>Channels</subject><subject>Conducting materials</subject><subject>Cooling</subject><subject>Cost engineering</subject><subject>Costs</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Magnets</subject><subject>Manufacturing engineering</subject><subject>Mesons</subject><subject>Meters</subject><subject>Scale models</subject><subject>Solenoids</subject><subject>Stress</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>Superconducting materials</subject><subject>Superconductivity</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLAzEQB_AgCtbqwaunIqJ42Jr34yjFFxQ8qOclzU7Klu2mJl3Eb2_KLiIe9JQw-eUPM4PQKcFTQrC5UWpqKGZE76EREUIXVBCxn-9YkEJTyg7RUUorjAnXXIyQeXG2qdvlpLEfaeJDnKxDBUMlLmGSug1EF9qqc9tdNYUG2lBX6RgdeNskOBnOMXq7v3udPRbz54en2e28cJyRbeGotItKY809UbCoHPOKgxQKGwBMqdGMCqyUcZZJra2mAJX0zBu90NxiNkZXfe4mhvcO0rZc18lB09gWQpdKQ7gUUlOT5eWfkmpJFBH4fyhNniAVGZ7_gqvQxTa3WxrDKOGY7tKue-RiSCmCLzexXtv4WRJc7pZSKlX2S8n2Ygi0KQ_eR9u6Ov34wKmUNLOzntUA8P06ZHwBy6KRdg</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Green, M.A.</creator><creator>McInturff, A.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010301</creationdate><title>Scaling laws for modeling large superconducting solenoids</title><author>Green, M.A. ; McInturff, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-c26abd8084f17ebdc3f74e65709ee022983250779ca3688a82eed6f3f98b84a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Channels</topic><topic>Conducting materials</topic><topic>Cooling</topic><topic>Cost engineering</topic><topic>Costs</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Magnets</topic><topic>Manufacturing engineering</topic><topic>Mesons</topic><topic>Meters</topic><topic>Scale models</topic><topic>Solenoids</topic><topic>Stress</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>Superconducting materials</topic><topic>Superconductivity</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Green, M.A.</creatorcontrib><creatorcontrib>McInturff, A.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Green, M.A.</au><au>McInturff, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling laws for modeling large superconducting solenoids</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2001-03-01</date><risdate>2001</risdate><volume>11</volume><issue>1</issue><spage>2292</spage><epage>2295</epage><pages>2292-2295</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The neutrino factory cooling system will consist of a long series of superconducting solenoids with a warm bore of 1.2 meters. In order to minimize the cost of the 200 to 300-meter long solenoid muon-cooling channel, the solenoids must be fabricated so that their mass is minimized. This report discuses how one can model the stress, strain and quench behavior of these large solenoid sections by building one-third to one-half scale models of the magnets. The cost of building and engineering the scale model magnets is a small fraction of the cost of fabricating a full-scale magnet section. This report discusses the limitations of the scaling approach as well as the types of superconducting solenoids for which the modeling technique is suitable.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/77.920318</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2001-03, Vol.11 (1), p.2292-2295
issn 1051-8223
1558-2515
language eng
recordid cdi_pascalfrancis_primary_1042662
source IEEE Electronic Library (IEL)
subjects Applied sciences
Channels
Conducting materials
Cooling
Cost engineering
Costs
Electrical engineering. Electrical power engineering
Electromagnets
Equations
Exact sciences and technology
Magnets
Manufacturing engineering
Mesons
Meters
Scale models
Solenoids
Stress
Superconducting coils
Superconducting magnets
Superconducting materials
Superconductivity
Various equipment and components
title Scaling laws for modeling large superconducting solenoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20laws%20for%20modeling%20large%20superconducting%20solenoids&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Green,%20M.A.&rft.date=2001-03-01&rft.volume=11&rft.issue=1&rft.spage=2292&rft.epage=2295&rft.pages=2292-2295&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.920318&rft_dat=%3Cproquest_RIE%3E2631216731%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993214020&rft_id=info:pmid/&rft_ieee_id=920318&rfr_iscdi=true