Syntactic-Based Methods for Measuring Word Similarity

This paper explores different strategies for extracting similarity relations between words from partially parsed text corpora. The strategies we have analysed do not require supervised training nor semanticinformation available from general lexical resources. They differ in the amount and the qualit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gamallo, Pablo, Gasperin, Caroline, Agustini, Alexandre, Lopes, Gabriel P.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue
container_start_page 116
container_title
container_volume 2166
creator Gamallo, Pablo
Gasperin, Caroline
Agustini, Alexandre
Lopes, Gabriel P.
description This paper explores different strategies for extracting similarity relations between words from partially parsed text corpora. The strategies we have analysed do not require supervised training nor semanticinformation available from general lexical resources. They differ in the amount and the quality of the syntactic contexts against whichwords are compared. The paper presents in details the notion of syntactic context and how syntactic information could be used to extract semantic regularities of word sequences. Finally, experimental tests with Portuguese corpus demonstrate that similarity measures based on fine-grained and elaborate syntactic contexts perform better than those based on poorly defined contexts.
doi_str_mv 10.1007/3-540-44805-5_15
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1020390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071696_21_127</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1825-17ffeba863b82c066b3bb175b4833f119106fa974839632dace96a69af85982e3</originalsourceid><addsrcrecordid>eNotUDtPwzAQNk8RSnfGDqwuPl_8GqHiJRUxFMRoOYlDA2kS7HTovydpueVO30unj5BrYHNgTN0iFSmjaaqZoMKCOCKXOCB7QByTBCQARUzNCZkapfccF0LBKUkYMk6NSvGcJEZowbkx-oJMY_xmwyBXIExCxGrX9C7vq5zeu-iL2avv120RZ2UbhtvFbaiar9lnG4rZqtpUtQtVv7siZ6Wro5_-7wn5eHx4XzzT5dvTy-JuSTvQXFBQZekzpyVmmudMygyzDJTIUo1YAhhgsnTDkxqNRF643BvppHGlFkZzjxNyc8jtXMxdXQbX5FW0Xag2LuwsMM7QsEE2P8hiN37rg83a9icOvB17tGiHZuy-Njv2OBjwPze0v1sfe-tHR-6bPrg6X7uu9yFaZAqkkZaDBa7wD2RWbmw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071696_21_127</pqid></control><display><type>book_chapter</type><title>Syntactic-Based Methods for Measuring Word Similarity</title><source>Springer Books</source><creator>Gamallo, Pablo ; Gasperin, Caroline ; Agustini, Alexandre ; Lopes, Gabriel P.</creator><contributor>Tauser, Karel ; Mautner, Paul ; Matousek, Vaclav ; Moucek, Roman ; Mautner, Pavel ; Matoušek, Václav ; Mouček, Roman ; Taušer, Karel</contributor><creatorcontrib>Gamallo, Pablo ; Gasperin, Caroline ; Agustini, Alexandre ; Lopes, Gabriel P. ; Tauser, Karel ; Mautner, Paul ; Matousek, Vaclav ; Moucek, Roman ; Mautner, Pavel ; Matoušek, Václav ; Mouček, Roman ; Taušer, Karel</creatorcontrib><description>This paper explores different strategies for extracting similarity relations between words from partially parsed text corpora. The strategies we have analysed do not require supervised training nor semanticinformation available from general lexical resources. They differ in the amount and the quality of the syntactic contexts against whichwords are compared. The paper presents in details the notion of syntactic context and how syntactic information could be used to extract semantic regularities of word sequences. Finally, experimental tests with Portuguese corpus demonstrate that similarity measures based on fine-grained and elaborate syntactic contexts perform better than those based on poorly defined contexts.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540425571</identifier><identifier>ISBN: 3540425578</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540448055</identifier><identifier>EISBN: 9783540448051</identifier><identifier>DOI: 10.1007/3-540-44805-5_15</identifier><identifier>OCLC: 958522998</identifier><identifier>LCCallNum: QA76.9.N38</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Local Weight ; Noun Phrase ; Related Word ; Speech and sound recognition and synthesis. Linguistics ; Syntactic Information ; Word Similarity</subject><ispartof>Lecture notes in computer science, 2001, Vol.2166, p.116-125</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071696-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-44805-5_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-44805-5_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1020390$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Tauser, Karel</contributor><contributor>Mautner, Paul</contributor><contributor>Matousek, Vaclav</contributor><contributor>Moucek, Roman</contributor><contributor>Mautner, Pavel</contributor><contributor>Matoušek, Václav</contributor><contributor>Mouček, Roman</contributor><contributor>Taušer, Karel</contributor><creatorcontrib>Gamallo, Pablo</creatorcontrib><creatorcontrib>Gasperin, Caroline</creatorcontrib><creatorcontrib>Agustini, Alexandre</creatorcontrib><creatorcontrib>Lopes, Gabriel P.</creatorcontrib><title>Syntactic-Based Methods for Measuring Word Similarity</title><title>Lecture notes in computer science</title><description>This paper explores different strategies for extracting similarity relations between words from partially parsed text corpora. The strategies we have analysed do not require supervised training nor semanticinformation available from general lexical resources. They differ in the amount and the quality of the syntactic contexts against whichwords are compared. The paper presents in details the notion of syntactic context and how syntactic information could be used to extract semantic regularities of word sequences. Finally, experimental tests with Portuguese corpus demonstrate that similarity measures based on fine-grained and elaborate syntactic contexts perform better than those based on poorly defined contexts.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Local Weight</subject><subject>Noun Phrase</subject><subject>Related Word</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><subject>Syntactic Information</subject><subject>Word Similarity</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540425571</isbn><isbn>3540425578</isbn><isbn>3540448055</isbn><isbn>9783540448051</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUDtPwzAQNk8RSnfGDqwuPl_8GqHiJRUxFMRoOYlDA2kS7HTovydpueVO30unj5BrYHNgTN0iFSmjaaqZoMKCOCKXOCB7QByTBCQARUzNCZkapfccF0LBKUkYMk6NSvGcJEZowbkx-oJMY_xmwyBXIExCxGrX9C7vq5zeu-iL2avv120RZ2UbhtvFbaiar9lnG4rZqtpUtQtVv7siZ6Wro5_-7wn5eHx4XzzT5dvTy-JuSTvQXFBQZekzpyVmmudMygyzDJTIUo1YAhhgsnTDkxqNRF643BvppHGlFkZzjxNyc8jtXMxdXQbX5FW0Xag2LuwsMM7QsEE2P8hiN37rg83a9icOvB17tGiHZuy-Njv2OBjwPze0v1sfe-tHR-6bPrg6X7uu9yFaZAqkkZaDBa7wD2RWbmw</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Gamallo, Pablo</creator><creator>Gasperin, Caroline</creator><creator>Agustini, Alexandre</creator><creator>Lopes, Gabriel P.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Syntactic-Based Methods for Measuring Word Similarity</title><author>Gamallo, Pablo ; Gasperin, Caroline ; Agustini, Alexandre ; Lopes, Gabriel P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1825-17ffeba863b82c066b3bb175b4833f119106fa974839632dace96a69af85982e3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Local Weight</topic><topic>Noun Phrase</topic><topic>Related Word</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><topic>Syntactic Information</topic><topic>Word Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gamallo, Pablo</creatorcontrib><creatorcontrib>Gasperin, Caroline</creatorcontrib><creatorcontrib>Agustini, Alexandre</creatorcontrib><creatorcontrib>Lopes, Gabriel P.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gamallo, Pablo</au><au>Gasperin, Caroline</au><au>Agustini, Alexandre</au><au>Lopes, Gabriel P.</au><au>Tauser, Karel</au><au>Mautner, Paul</au><au>Matousek, Vaclav</au><au>Moucek, Roman</au><au>Mautner, Pavel</au><au>Matoušek, Václav</au><au>Mouček, Roman</au><au>Taušer, Karel</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Syntactic-Based Methods for Measuring Word Similarity</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2166</volume><spage>116</spage><epage>125</epage><pages>116-125</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540425571</isbn><isbn>3540425578</isbn><eisbn>3540448055</eisbn><eisbn>9783540448051</eisbn><abstract>This paper explores different strategies for extracting similarity relations between words from partially parsed text corpora. The strategies we have analysed do not require supervised training nor semanticinformation available from general lexical resources. They differ in the amount and the quality of the syntactic contexts against whichwords are compared. The paper presents in details the notion of syntactic context and how syntactic information could be used to extract semantic regularities of word sequences. Finally, experimental tests with Portuguese corpus demonstrate that similarity measures based on fine-grained and elaborate syntactic contexts perform better than those based on poorly defined contexts.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-44805-5_15</doi><oclcid>958522998</oclcid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2001, Vol.2166, p.116-125
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1020390
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Local Weight
Noun Phrase
Related Word
Speech and sound recognition and synthesis. Linguistics
Syntactic Information
Word Similarity
title Syntactic-Based Methods for Measuring Word Similarity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Syntactic-Based%20Methods%20for%20Measuring%20Word%20Similarity&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Gamallo,%20Pablo&rft.date=2001&rft.volume=2166&rft.spage=116&rft.epage=125&rft.pages=116-125&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540425571&rft.isbn_list=3540425578&rft_id=info:doi/10.1007/3-540-44805-5_15&rft_dat=%3Cproquest_pasca%3EEBC3071696_21_127%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540448055&rft.eisbn_list=9783540448051&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071696_21_127&rft_id=info:pmid/&rfr_iscdi=true