Applying the Bayesian evidence framework to v-support vector regression

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LAW, Martin H, KWOK, James T
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue
container_start_page 312
container_title
container_volume
creator LAW, Martin H
KWOK, James T
description
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis</sourceid><recordid>TN_cdi_pascalfrancis_primary_1020354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020354</sourcerecordid><originalsourceid>FETCH-pascalfrancis_primary_10203543</originalsourceid><addsrcrecordid>eNqNjksOgjAUABs_iaDeoQu3JKUtEJZq_BzAPWnwgVVom76K4fay8ACuZjOZzIxEaZ6miRCynJNYZJJJnok8W5CICcaTspBiRWLEJ2OMFyWPyGXvXDdq09LwAHpQI6BWhsKg72BqoI1XPXysf9Fg6ZDg2znrAx2gDtZTD60HRG3Nhiwb1SFsf1yT3fl0O14Tp7BW3ZQxtcbKed0rP1Yp42z6E39qX4XmQS0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying the Bayesian evidence framework to v-support vector regression</title><source>Springer Books</source><creator>LAW, Martin H ; KWOK, James T</creator><creatorcontrib>LAW, Martin H ; KWOK, James T</creatorcontrib><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540425365</identifier><identifier>ISBN: 9783540425366</identifier><identifier>EISSN: 1611-3349</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Mathematics ; Multivariate analysis ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Lecture notes in computer science, 2001, p.312-323</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,4048,4049</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1020354$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LAW, Martin H</creatorcontrib><creatorcontrib>KWOK, James T</creatorcontrib><title>Applying the Bayesian evidence framework to v-support vector regression</title><title>Lecture notes in computer science</title><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540425365</isbn><isbn>9783540425366</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqNjksOgjAUABs_iaDeoQu3JKUtEJZq_BzAPWnwgVVom76K4fay8ACuZjOZzIxEaZ6miRCynJNYZJJJnok8W5CICcaTspBiRWLEJ2OMFyWPyGXvXDdq09LwAHpQI6BWhsKg72BqoI1XPXysf9Fg6ZDg2znrAx2gDtZTD60HRG3Nhiwb1SFsf1yT3fl0O14Tp7BW3ZQxtcbKed0rP1Yp42z6E39qX4XmQS0</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>LAW, Martin H</creator><creator>KWOK, James T</creator><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Applying the Bayesian evidence framework to v-support vector regression</title><author>LAW, Martin H ; KWOK, James T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pascalfrancis_primary_10203543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LAW, Martin H</creatorcontrib><creatorcontrib>KWOK, James T</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LAW, Martin H</au><au>KWOK, James T</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying the Bayesian evidence framework to v-support vector regression</atitle><btitle>Lecture notes in computer science</btitle><date>2001</date><risdate>2001</risdate><spage>312</spage><epage>323</epage><pages>312-323</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540425365</isbn><isbn>9783540425366</isbn><cop>Berlin</cop><pub>Springer</pub></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2001, p.312-323
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1020354
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
Mathematics
Multivariate analysis
Probability and statistics
Sciences and techniques of general use
Statistics
title Applying the Bayesian evidence framework to v-support vector regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20the%20Bayesian%20evidence%20framework%20to%20v-support%20vector%20regression&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=LAW,%20Martin%20H&rft.date=2001&rft.spage=312&rft.epage=323&rft.pages=312-323&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540425365&rft.isbn_list=9783540425366&rft_id=info:doi/&rft_dat=%3Cpascalfrancis%3E1020354%3C/pascalfrancis%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true