Applying the Bayesian evidence framework to v-support vector regression
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | |
container_start_page | 312 |
container_title | |
container_volume | |
creator | LAW, Martin H KWOK, James T |
description | |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis</sourceid><recordid>TN_cdi_pascalfrancis_primary_1020354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020354</sourcerecordid><originalsourceid>FETCH-pascalfrancis_primary_10203543</originalsourceid><addsrcrecordid>eNqNjksOgjAUABs_iaDeoQu3JKUtEJZq_BzAPWnwgVVom76K4fay8ACuZjOZzIxEaZ6miRCynJNYZJJJnok8W5CICcaTspBiRWLEJ2OMFyWPyGXvXDdq09LwAHpQI6BWhsKg72BqoI1XPXysf9Fg6ZDg2znrAx2gDtZTD60HRG3Nhiwb1SFsf1yT3fl0O14Tp7BW3ZQxtcbKed0rP1Yp42z6E39qX4XmQS0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying the Bayesian evidence framework to v-support vector regression</title><source>Springer Books</source><creator>LAW, Martin H ; KWOK, James T</creator><creatorcontrib>LAW, Martin H ; KWOK, James T</creatorcontrib><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540425365</identifier><identifier>ISBN: 9783540425366</identifier><identifier>EISSN: 1611-3349</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Mathematics ; Multivariate analysis ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Lecture notes in computer science, 2001, p.312-323</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,4048,4049</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1020354$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LAW, Martin H</creatorcontrib><creatorcontrib>KWOK, James T</creatorcontrib><title>Applying the Bayesian evidence framework to v-support vector regression</title><title>Lecture notes in computer science</title><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540425365</isbn><isbn>9783540425366</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqNjksOgjAUABs_iaDeoQu3JKUtEJZq_BzAPWnwgVVom76K4fay8ACuZjOZzIxEaZ6miRCynJNYZJJJnok8W5CICcaTspBiRWLEJ2OMFyWPyGXvXDdq09LwAHpQI6BWhsKg72BqoI1XPXysf9Fg6ZDg2znrAx2gDtZTD60HRG3Nhiwb1SFsf1yT3fl0O14Tp7BW3ZQxtcbKed0rP1Yp42z6E39qX4XmQS0</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>LAW, Martin H</creator><creator>KWOK, James T</creator><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Applying the Bayesian evidence framework to v-support vector regression</title><author>LAW, Martin H ; KWOK, James T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pascalfrancis_primary_10203543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LAW, Martin H</creatorcontrib><creatorcontrib>KWOK, James T</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LAW, Martin H</au><au>KWOK, James T</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying the Bayesian evidence framework to v-support vector regression</atitle><btitle>Lecture notes in computer science</btitle><date>2001</date><risdate>2001</risdate><spage>312</spage><epage>323</epage><pages>312-323</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540425365</isbn><isbn>9783540425366</isbn><cop>Berlin</cop><pub>Springer</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2001, p.312-323 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1020354 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Learning and adaptive systems Mathematics Multivariate analysis Probability and statistics Sciences and techniques of general use Statistics |
title | Applying the Bayesian evidence framework to v-support vector regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20the%20Bayesian%20evidence%20framework%20to%20v-support%20vector%20regression&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=LAW,%20Martin%20H&rft.date=2001&rft.spage=312&rft.epage=323&rft.pages=312-323&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540425365&rft.isbn_list=9783540425366&rft_id=info:doi/&rft_dat=%3Cpascalfrancis%3E1020354%3C/pascalfrancis%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |