A New Low Complexity Parallel Multiplier for a Class of Finite Fields
In this paper a new low complexity parallel multiplier for characteristic two finite fields GF(2m) is proposed. In particular our multiplier works with field elements represented through both Canonical Basis and Type I Optimal Normal Basis (ONB), provided that the irreducible polynomial generating t...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | |
container_start_page | 160 |
container_title | |
container_volume | 2162 |
creator | Leone, Manuel |
description | In this paper a new low complexity parallel multiplier for characteristic two finite fields GF(2m) is proposed. In particular our multiplier works with field elements represented through both Canonical Basis and Type I Optimal Normal Basis (ONB), provided that the irreducible polynomial generating the field is an All One Polynomial (AOP). The main advantage of the scheme is the resulting space complexity, significantly lower than the one provided by the other fast parallel multipliers currently available in the open literature and belonging to the same class. |
doi_str_mv | 10.1007/3-540-44709-1_15 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1020134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072404_21_172</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2245-4f0b0c7f9066396a4894f2f4f7b2ac737a23a7d4443662cf182729c85017a9fe3</originalsourceid><addsrcrecordid>eNotkDtPwzAUhc1ThNKd0QNrwL7XjuMRVRSQymOA2XKDDQGTBDuo9N_jFu5ypHsew0fIKWfnnDF1gaUUrBRCMV1yw-UOOcb82T74Lil4xXmJKPQemWpVbz2QwGGfFAwZlFoJPCSFlrWUWgp1RKYpvbN8CIAaC3J1Se_dii76FZ31n0NwP-24po822hBcoHffYWyH0LpIfR-ppbNgU6K9p_O2a0eXxYWXdEIOvA3JTf91Qp7nV0-zm3LxcH07u1yUA4CQpfBsyRrlNasq1JUVtRYevPBqCbZRqCygVS9CCKwqaDyvQYFuasm4sto7nJCzv93BpsYGH23XtMkMsf20cW04A8ZR5Nj5Xyxlp3t10Sz7_iNl32y4GjSZlNliNBuuuYD_u7H_-nZpNG7TaFw3ZhDNmx1GF5NBpiAjNpBLCvAXGt1ytQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072404_21_172</pqid></control><display><type>book_chapter</type><title>A New Low Complexity Parallel Multiplier for a Class of Finite Fields</title><source>Springer Books</source><creator>Leone, Manuel</creator><contributor>Nacchae, David ; Koc, Cetin K ; Paar, Christof ; Koç, Çetin K. ; Naccache, David ; Paar, Christof</contributor><creatorcontrib>Leone, Manuel ; Nacchae, David ; Koc, Cetin K ; Paar, Christof ; Koç, Çetin K. ; Naccache, David ; Paar, Christof</creatorcontrib><description>In this paper a new low complexity parallel multiplier for characteristic two finite fields GF(2m) is proposed. In particular our multiplier works with field elements represented through both Canonical Basis and Type I Optimal Normal Basis (ONB), provided that the irreducible polynomial generating the field is an All One Polynomial (AOP). The main advantage of the scheme is the resulting space complexity, significantly lower than the one provided by the other fast parallel multipliers currently available in the open literature and belonging to the same class.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540425212</identifier><identifier>ISBN: 3540425217</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540447091</identifier><identifier>EISBN: 9783540447092</identifier><identifier>DOI: 10.1007/3-540-44709-1_15</identifier><identifier>OCLC: 958559547</identifier><identifier>LCCallNum: QA268</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Canonical Basis ; Cryptography ; Electronics ; Exact sciences and technology ; Finite Field ; Information, signal and communications theory ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal and communications theory ; Smart Card ; Space Complexity ; Telecommunications and information theory ; Time Complexity</subject><ispartof>Cryptographic Hardware and Embedded Systems - CHES 2001, 2001, Vol.2162, p.160-170</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072404-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-44709-1_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-44709-1_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1020134$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Nacchae, David</contributor><contributor>Koc, Cetin K</contributor><contributor>Paar, Christof</contributor><contributor>Koç, Çetin K.</contributor><contributor>Naccache, David</contributor><contributor>Paar, Christof</contributor><creatorcontrib>Leone, Manuel</creatorcontrib><title>A New Low Complexity Parallel Multiplier for a Class of Finite Fields</title><title>Cryptographic Hardware and Embedded Systems - CHES 2001</title><description>In this paper a new low complexity parallel multiplier for characteristic two finite fields GF(2m) is proposed. In particular our multiplier works with field elements represented through both Canonical Basis and Type I Optimal Normal Basis (ONB), provided that the irreducible polynomial generating the field is an All One Polynomial (AOP). The main advantage of the scheme is the resulting space complexity, significantly lower than the one provided by the other fast parallel multipliers currently available in the open literature and belonging to the same class.</description><subject>Applied sciences</subject><subject>Canonical Basis</subject><subject>Cryptography</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite Field</subject><subject>Information, signal and communications theory</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal and communications theory</subject><subject>Smart Card</subject><subject>Space Complexity</subject><subject>Telecommunications and information theory</subject><subject>Time Complexity</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540425212</isbn><isbn>3540425217</isbn><isbn>3540447091</isbn><isbn>9783540447092</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkDtPwzAUhc1ThNKd0QNrwL7XjuMRVRSQymOA2XKDDQGTBDuo9N_jFu5ypHsew0fIKWfnnDF1gaUUrBRCMV1yw-UOOcb82T74Lil4xXmJKPQemWpVbz2QwGGfFAwZlFoJPCSFlrWUWgp1RKYpvbN8CIAaC3J1Se_dii76FZ31n0NwP-24po822hBcoHffYWyH0LpIfR-ppbNgU6K9p_O2a0eXxYWXdEIOvA3JTf91Qp7nV0-zm3LxcH07u1yUA4CQpfBsyRrlNasq1JUVtRYevPBqCbZRqCygVS9CCKwqaDyvQYFuasm4sto7nJCzv93BpsYGH23XtMkMsf20cW04A8ZR5Nj5Xyxlp3t10Sz7_iNl32y4GjSZlNliNBuuuYD_u7H_-nZpNG7TaFw3ZhDNmx1GF5NBpiAjNpBLCvAXGt1ytQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Leone, Manuel</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>A New Low Complexity Parallel Multiplier for a Class of Finite Fields</title><author>Leone, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2245-4f0b0c7f9066396a4894f2f4f7b2ac737a23a7d4443662cf182729c85017a9fe3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Canonical Basis</topic><topic>Cryptography</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite Field</topic><topic>Information, signal and communications theory</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal and communications theory</topic><topic>Smart Card</topic><topic>Space Complexity</topic><topic>Telecommunications and information theory</topic><topic>Time Complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leone, Manuel</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leone, Manuel</au><au>Nacchae, David</au><au>Koc, Cetin K</au><au>Paar, Christof</au><au>Koç, Çetin K.</au><au>Naccache, David</au><au>Paar, Christof</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A New Low Complexity Parallel Multiplier for a Class of Finite Fields</atitle><btitle>Cryptographic Hardware and Embedded Systems - CHES 2001</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2162</volume><spage>160</spage><epage>170</epage><pages>160-170</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540425212</isbn><isbn>3540425217</isbn><eisbn>3540447091</eisbn><eisbn>9783540447092</eisbn><abstract>In this paper a new low complexity parallel multiplier for characteristic two finite fields GF(2m) is proposed. In particular our multiplier works with field elements represented through both Canonical Basis and Type I Optimal Normal Basis (ONB), provided that the irreducible polynomial generating the field is an All One Polynomial (AOP). The main advantage of the scheme is the resulting space complexity, significantly lower than the one provided by the other fast parallel multipliers currently available in the open literature and belonging to the same class.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-44709-1_15</doi><oclcid>958559547</oclcid><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Cryptographic Hardware and Embedded Systems - CHES 2001, 2001, Vol.2162, p.160-170 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1020134 |
source | Springer Books |
subjects | Applied sciences Canonical Basis Cryptography Electronics Exact sciences and technology Finite Field Information, signal and communications theory Integrated circuits Integrated circuits by function (including memories and processors) Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Signal and communications theory Smart Card Space Complexity Telecommunications and information theory Time Complexity |
title | A New Low Complexity Parallel Multiplier for a Class of Finite Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20New%20Low%20Complexity%20Parallel%20Multiplier%20for%20a%20Class%20of%20Finite%20Fields&rft.btitle=Cryptographic%20Hardware%20and%20Embedded%20Systems%20-%20CHES%202001&rft.au=Leone,%20Manuel&rft.date=2001&rft.volume=2162&rft.spage=160&rft.epage=170&rft.pages=160-170&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540425212&rft.isbn_list=3540425217&rft_id=info:doi/10.1007/3-540-44709-1_15&rft_dat=%3Cproquest_pasca%3EEBC3072404_21_172%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540447091&rft.eisbn_list=9783540447092&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072404_21_172&rft_id=info:pmid/&rfr_iscdi=true |