A New Low Complexity Parallel Multiplier for a Class of Finite Fields

In this paper a new low complexity parallel multiplier for characteristic two finite fields GF(2m) is proposed. In particular our multiplier works with field elements represented through both Canonical Basis and Type I Optimal Normal Basis (ONB), provided that the irreducible polynomial generating t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Leone, Manuel
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue
container_start_page 160
container_title
container_volume 2162
creator Leone, Manuel
description In this paper a new low complexity parallel multiplier for characteristic two finite fields GF(2m) is proposed. In particular our multiplier works with field elements represented through both Canonical Basis and Type I Optimal Normal Basis (ONB), provided that the irreducible polynomial generating the field is an All One Polynomial (AOP). The main advantage of the scheme is the resulting space complexity, significantly lower than the one provided by the other fast parallel multipliers currently available in the open literature and belonging to the same class.
doi_str_mv 10.1007/3-540-44709-1_15
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1020134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072404_21_172</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2245-4f0b0c7f9066396a4894f2f4f7b2ac737a23a7d4443662cf182729c85017a9fe3</originalsourceid><addsrcrecordid>eNotkDtPwzAUhc1ThNKd0QNrwL7XjuMRVRSQymOA2XKDDQGTBDuo9N_jFu5ypHsew0fIKWfnnDF1gaUUrBRCMV1yw-UOOcb82T74Lil4xXmJKPQemWpVbz2QwGGfFAwZlFoJPCSFlrWUWgp1RKYpvbN8CIAaC3J1Se_dii76FZ31n0NwP-24po822hBcoHffYWyH0LpIfR-ppbNgU6K9p_O2a0eXxYWXdEIOvA3JTf91Qp7nV0-zm3LxcH07u1yUA4CQpfBsyRrlNasq1JUVtRYevPBqCbZRqCygVS9CCKwqaDyvQYFuasm4sto7nJCzv93BpsYGH23XtMkMsf20cW04A8ZR5Nj5Xyxlp3t10Sz7_iNl32y4GjSZlNliNBuuuYD_u7H_-nZpNG7TaFw3ZhDNmx1GF5NBpiAjNpBLCvAXGt1ytQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072404_21_172</pqid></control><display><type>book_chapter</type><title>A New Low Complexity Parallel Multiplier for a Class of Finite Fields</title><source>Springer Books</source><creator>Leone, Manuel</creator><contributor>Nacchae, David ; Koc, Cetin K ; Paar, Christof ; Koç, Çetin K. ; Naccache, David ; Paar, Christof</contributor><creatorcontrib>Leone, Manuel ; Nacchae, David ; Koc, Cetin K ; Paar, Christof ; Koç, Çetin K. ; Naccache, David ; Paar, Christof</creatorcontrib><description>In this paper a new low complexity parallel multiplier for characteristic two finite fields GF(2m) is proposed. In particular our multiplier works with field elements represented through both Canonical Basis and Type I Optimal Normal Basis (ONB), provided that the irreducible polynomial generating the field is an All One Polynomial (AOP). The main advantage of the scheme is the resulting space complexity, significantly lower than the one provided by the other fast parallel multipliers currently available in the open literature and belonging to the same class.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540425212</identifier><identifier>ISBN: 3540425217</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540447091</identifier><identifier>EISBN: 9783540447092</identifier><identifier>DOI: 10.1007/3-540-44709-1_15</identifier><identifier>OCLC: 958559547</identifier><identifier>LCCallNum: QA268</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Canonical Basis ; Cryptography ; Electronics ; Exact sciences and technology ; Finite Field ; Information, signal and communications theory ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Signal and communications theory ; Smart Card ; Space Complexity ; Telecommunications and information theory ; Time Complexity</subject><ispartof>Cryptographic Hardware and Embedded Systems - CHES 2001, 2001, Vol.2162, p.160-170</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072404-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-44709-1_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-44709-1_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1020134$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Nacchae, David</contributor><contributor>Koc, Cetin K</contributor><contributor>Paar, Christof</contributor><contributor>Koç, Çetin K.</contributor><contributor>Naccache, David</contributor><contributor>Paar, Christof</contributor><creatorcontrib>Leone, Manuel</creatorcontrib><title>A New Low Complexity Parallel Multiplier for a Class of Finite Fields</title><title>Cryptographic Hardware and Embedded Systems - CHES 2001</title><description>In this paper a new low complexity parallel multiplier for characteristic two finite fields GF(2m) is proposed. In particular our multiplier works with field elements represented through both Canonical Basis and Type I Optimal Normal Basis (ONB), provided that the irreducible polynomial generating the field is an All One Polynomial (AOP). The main advantage of the scheme is the resulting space complexity, significantly lower than the one provided by the other fast parallel multipliers currently available in the open literature and belonging to the same class.</description><subject>Applied sciences</subject><subject>Canonical Basis</subject><subject>Cryptography</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Finite Field</subject><subject>Information, signal and communications theory</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Signal and communications theory</subject><subject>Smart Card</subject><subject>Space Complexity</subject><subject>Telecommunications and information theory</subject><subject>Time Complexity</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540425212</isbn><isbn>3540425217</isbn><isbn>3540447091</isbn><isbn>9783540447092</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotkDtPwzAUhc1ThNKd0QNrwL7XjuMRVRSQymOA2XKDDQGTBDuo9N_jFu5ypHsew0fIKWfnnDF1gaUUrBRCMV1yw-UOOcb82T74Lil4xXmJKPQemWpVbz2QwGGfFAwZlFoJPCSFlrWUWgp1RKYpvbN8CIAaC3J1Se_dii76FZ31n0NwP-24po822hBcoHffYWyH0LpIfR-ppbNgU6K9p_O2a0eXxYWXdEIOvA3JTf91Qp7nV0-zm3LxcH07u1yUA4CQpfBsyRrlNasq1JUVtRYevPBqCbZRqCygVS9CCKwqaDyvQYFuasm4sto7nJCzv93BpsYGH23XtMkMsf20cW04A8ZR5Nj5Xyxlp3t10Sz7_iNl32y4GjSZlNliNBuuuYD_u7H_-nZpNG7TaFw3ZhDNmx1GF5NBpiAjNpBLCvAXGt1ytQ</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Leone, Manuel</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>A New Low Complexity Parallel Multiplier for a Class of Finite Fields</title><author>Leone, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2245-4f0b0c7f9066396a4894f2f4f7b2ac737a23a7d4443662cf182729c85017a9fe3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Canonical Basis</topic><topic>Cryptography</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Finite Field</topic><topic>Information, signal and communications theory</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Signal and communications theory</topic><topic>Smart Card</topic><topic>Space Complexity</topic><topic>Telecommunications and information theory</topic><topic>Time Complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leone, Manuel</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leone, Manuel</au><au>Nacchae, David</au><au>Koc, Cetin K</au><au>Paar, Christof</au><au>Koç, Çetin K.</au><au>Naccache, David</au><au>Paar, Christof</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A New Low Complexity Parallel Multiplier for a Class of Finite Fields</atitle><btitle>Cryptographic Hardware and Embedded Systems - CHES 2001</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2162</volume><spage>160</spage><epage>170</epage><pages>160-170</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540425212</isbn><isbn>3540425217</isbn><eisbn>3540447091</eisbn><eisbn>9783540447092</eisbn><abstract>In this paper a new low complexity parallel multiplier for characteristic two finite fields GF(2m) is proposed. In particular our multiplier works with field elements represented through both Canonical Basis and Type I Optimal Normal Basis (ONB), provided that the irreducible polynomial generating the field is an All One Polynomial (AOP). The main advantage of the scheme is the resulting space complexity, significantly lower than the one provided by the other fast parallel multipliers currently available in the open literature and belonging to the same class.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-44709-1_15</doi><oclcid>958559547</oclcid><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Cryptographic Hardware and Embedded Systems - CHES 2001, 2001, Vol.2162, p.160-170
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1020134
source Springer Books
subjects Applied sciences
Canonical Basis
Cryptography
Electronics
Exact sciences and technology
Finite Field
Information, signal and communications theory
Integrated circuits
Integrated circuits by function (including memories and processors)
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Signal and communications theory
Smart Card
Space Complexity
Telecommunications and information theory
Time Complexity
title A New Low Complexity Parallel Multiplier for a Class of Finite Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20New%20Low%20Complexity%20Parallel%20Multiplier%20for%20a%20Class%20of%20Finite%20Fields&rft.btitle=Cryptographic%20Hardware%20and%20Embedded%20Systems%20-%20CHES%202001&rft.au=Leone,%20Manuel&rft.date=2001&rft.volume=2162&rft.spage=160&rft.epage=170&rft.pages=160-170&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540425212&rft.isbn_list=3540425217&rft_id=info:doi/10.1007/3-540-44709-1_15&rft_dat=%3Cproquest_pasca%3EEBC3072404_21_172%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540447091&rft.eisbn_list=9783540447092&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072404_21_172&rft_id=info:pmid/&rfr_iscdi=true