Towards Compatible Triangulations

We state the following conjecture: any two planar n-point sets (that agree on the number of convex hull points) can be triangulated in a compatible manner, i.e., such that the resulting two planar graphs are isomorphic. The conjecture is proved true for point sets with at most three interior points....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aichholzer, Oswin, Aurenhammer, Franz, Krasser, Hannes, Hurtado, Ferran
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We state the following conjecture: any two planar n-point sets (that agree on the number of convex hull points) can be triangulated in a compatible manner, i.e., such that the resulting two planar graphs are isomorphic. The conjecture is proved true for point sets with at most three interior points. We further exhibit a class of point sets which can be triangulated compatibly with any other set (that satis?es the obvious size and hull restrictions). Finally, we prove that adding a small number of Steiner points (the number of interior points minus two) always allows for compatible triangulations.
ISSN:0302-9743
1611-3349
DOI:10.1007/3-540-44679-6_12