Classification of Specular Object Based on Statistical Learning Theory

This paper has presented an efficient solder joint inspection technique through the use of wavelet transform and Support Vector Machines. The proposed scheme consists of two stages: a feature extraction stage for extracting features with wavelet transform, and a classification stage for classifying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Soo Yun, Tae
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue
container_start_page 555
container_title
container_volume 2085
creator Soo Yun, Tae
description This paper has presented an efficient solder joint inspection technique through the use of wavelet transform and Support Vector Machines. The proposed scheme consists of two stages: a feature extraction stage for extracting features with wavelet transform, and a classification stage for classifying solder joints with a support vector machines. Experimental results show that the proposed method produces a high classification rate in the nonlinearly separable problem of classifying solder joints.
doi_str_mv 10.1007/3-540-45723-2_67
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1018754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072987_73_581</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1827-a07029f98053ff272e1244007cca30b89a7fbf1b9bdc73eefbec4e47b96c197c3</originalsourceid><addsrcrecordid>eNotUDtPwzAQNk8RSnfGDKwpts_JxSNUFJAqdWiZLce125SQBDsd-u9xS2856Xvp7iPkkdEJoxSfIcsFzUSOHDKuCrwg9xCRE8AvScIKxjIAIa_IWGJ54jgH5NckoUB5JlHALUlkXubRkYs7Mg5hR-MAZwUXCZlNGx1C7Wqjh7pr086ly96afaN9uqh21gzpqw52nUZuOURNGKK0SedW-7ZuN-lqazt_eCA3TjfBjs97RL5mb6vpRzZfvH9OX-ZZz0qOmaZIuXSypDk4x5FbxoWIrxqjgVal1OgqxypZrQ2Cta6yRliBlSwMk2hgRJ7-c3sd4hnO69bUQfW-_tH-oBhlJeYiyib_shCZdmO9qrruO0ReHYtVoGJV6tSjOhYbDXDO9d3v3oZB2aPD2HbwujFb3Q_WBwUUuSxRYQwoGfwBfiB1ew</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072987_73_581</pqid></control><display><type>book_chapter</type><title>Classification of Specular Object Based on Statistical Learning Theory</title><source>Springer Books</source><creator>Soo Yun, Tae</creator><contributor>Mira, Jose ; Prieto, Alberto ; Prieto, Alberto ; Mira, José</contributor><creatorcontrib>Soo Yun, Tae ; Mira, Jose ; Prieto, Alberto ; Prieto, Alberto ; Mira, José</creatorcontrib><description>This paper has presented an efficient solder joint inspection technique through the use of wavelet transform and Support Vector Machines. The proposed scheme consists of two stages: a feature extraction stage for extracting features with wavelet transform, and a classification stage for classifying solder joints with a support vector machines. Experimental results show that the proposed method produces a high classification rate in the nonlinearly separable problem of classifying solder joints.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540422372</identifier><identifier>ISBN: 3540422374</identifier><identifier>ISBN: 3540422358</identifier><identifier>ISBN: 9783540422358</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540457232</identifier><identifier>EISBN: 9783540457237</identifier><identifier>DOI: 10.1007/3-540-45723-2_67</identifier><identifier>OCLC: 958523254</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Good Generalization Performance ; Haar Wavelet ; Pattern recognition. Digital image processing. Computational geometry ; Solder Joint ; Statistical Learn Theory ; Support Vector Machine</subject><ispartof>Bio-Inspired Applications of Connectionism, 2001, Vol.2085, p.555-562</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072987-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45723-2_67$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45723-2_67$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1018754$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Mira, Jose</contributor><contributor>Prieto, Alberto</contributor><contributor>Prieto, Alberto</contributor><contributor>Mira, José</contributor><creatorcontrib>Soo Yun, Tae</creatorcontrib><title>Classification of Specular Object Based on Statistical Learning Theory</title><title>Bio-Inspired Applications of Connectionism</title><description>This paper has presented an efficient solder joint inspection technique through the use of wavelet transform and Support Vector Machines. The proposed scheme consists of two stages: a feature extraction stage for extracting features with wavelet transform, and a classification stage for classifying solder joints with a support vector machines. Experimental results show that the proposed method produces a high classification rate in the nonlinearly separable problem of classifying solder joints.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Good Generalization Performance</subject><subject>Haar Wavelet</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Solder Joint</subject><subject>Statistical Learn Theory</subject><subject>Support Vector Machine</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540422372</isbn><isbn>3540422374</isbn><isbn>3540422358</isbn><isbn>9783540422358</isbn><isbn>3540457232</isbn><isbn>9783540457237</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUDtPwzAQNk8RSnfGDKwpts_JxSNUFJAqdWiZLce125SQBDsd-u9xS2856Xvp7iPkkdEJoxSfIcsFzUSOHDKuCrwg9xCRE8AvScIKxjIAIa_IWGJ54jgH5NckoUB5JlHALUlkXubRkYs7Mg5hR-MAZwUXCZlNGx1C7Wqjh7pr086ly96afaN9uqh21gzpqw52nUZuOURNGKK0SedW-7ZuN-lqazt_eCA3TjfBjs97RL5mb6vpRzZfvH9OX-ZZz0qOmaZIuXSypDk4x5FbxoWIrxqjgVal1OgqxypZrQ2Cta6yRliBlSwMk2hgRJ7-c3sd4hnO69bUQfW-_tH-oBhlJeYiyib_shCZdmO9qrruO0ReHYtVoGJV6tSjOhYbDXDO9d3v3oZB2aPD2HbwujFb3Q_WBwUUuSxRYQwoGfwBfiB1ew</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Soo Yun, Tae</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Classification of Specular Object Based on Statistical Learning Theory</title><author>Soo Yun, Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1827-a07029f98053ff272e1244007cca30b89a7fbf1b9bdc73eefbec4e47b96c197c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Good Generalization Performance</topic><topic>Haar Wavelet</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Solder Joint</topic><topic>Statistical Learn Theory</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soo Yun, Tae</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soo Yun, Tae</au><au>Mira, Jose</au><au>Prieto, Alberto</au><au>Prieto, Alberto</au><au>Mira, José</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Classification of Specular Object Based on Statistical Learning Theory</atitle><btitle>Bio-Inspired Applications of Connectionism</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2085</volume><spage>555</spage><epage>562</epage><pages>555-562</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540422372</isbn><isbn>3540422374</isbn><isbn>3540422358</isbn><isbn>9783540422358</isbn><eisbn>3540457232</eisbn><eisbn>9783540457237</eisbn><abstract>This paper has presented an efficient solder joint inspection technique through the use of wavelet transform and Support Vector Machines. The proposed scheme consists of two stages: a feature extraction stage for extracting features with wavelet transform, and a classification stage for classifying solder joints with a support vector machines. Experimental results show that the proposed method produces a high classification rate in the nonlinearly separable problem of classifying solder joints.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45723-2_67</doi><oclcid>958523254</oclcid><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Bio-Inspired Applications of Connectionism, 2001, Vol.2085, p.555-562
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1018754
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Good Generalization Performance
Haar Wavelet
Pattern recognition. Digital image processing. Computational geometry
Solder Joint
Statistical Learn Theory
Support Vector Machine
title Classification of Specular Object Based on Statistical Learning Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Classification%20of%20Specular%20Object%20Based%20on%20Statistical%20Learning%20Theory&rft.btitle=Bio-Inspired%20Applications%20of%20Connectionism&rft.au=Soo%20Yun,%20Tae&rft.date=2001&rft.volume=2085&rft.spage=555&rft.epage=562&rft.pages=555-562&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540422372&rft.isbn_list=3540422374&rft.isbn_list=3540422358&rft.isbn_list=9783540422358&rft_id=info:doi/10.1007/3-540-45723-2_67&rft_dat=%3Cproquest_pasca%3EEBC3072987_73_581%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540457232&rft.eisbn_list=9783540457237&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072987_73_581&rft_id=info:pmid/&rfr_iscdi=true