Classification of Specular Object Based on Statistical Learning Theory
This paper has presented an efficient solder joint inspection technique through the use of wavelet transform and Support Vector Machines. The proposed scheme consists of two stages: a feature extraction stage for extracting features with wavelet transform, and a classification stage for classifying...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 562 |
---|---|
container_issue | |
container_start_page | 555 |
container_title | |
container_volume | 2085 |
creator | Soo Yun, Tae |
description | This paper has presented an efficient solder joint inspection technique through the use of wavelet transform and Support Vector Machines. The proposed scheme consists of two stages: a feature extraction stage for extracting features with wavelet transform, and a classification stage for classifying solder joints with a support vector machines. Experimental results show that the proposed method produces a high classification rate in the nonlinearly separable problem of classifying solder joints. |
doi_str_mv | 10.1007/3-540-45723-2_67 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1018754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3072987_73_581</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1827-a07029f98053ff272e1244007cca30b89a7fbf1b9bdc73eefbec4e47b96c197c3</originalsourceid><addsrcrecordid>eNotUDtPwzAQNk8RSnfGDKwpts_JxSNUFJAqdWiZLce125SQBDsd-u9xS2856Xvp7iPkkdEJoxSfIcsFzUSOHDKuCrwg9xCRE8AvScIKxjIAIa_IWGJ54jgH5NckoUB5JlHALUlkXubRkYs7Mg5hR-MAZwUXCZlNGx1C7Wqjh7pr086ly96afaN9uqh21gzpqw52nUZuOURNGKK0SedW-7ZuN-lqazt_eCA3TjfBjs97RL5mb6vpRzZfvH9OX-ZZz0qOmaZIuXSypDk4x5FbxoWIrxqjgVal1OgqxypZrQ2Cta6yRliBlSwMk2hgRJ7-c3sd4hnO69bUQfW-_tH-oBhlJeYiyib_shCZdmO9qrruO0ReHYtVoGJV6tSjOhYbDXDO9d3v3oZB2aPD2HbwujFb3Q_WBwUUuSxRYQwoGfwBfiB1ew</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3072987_73_581</pqid></control><display><type>book_chapter</type><title>Classification of Specular Object Based on Statistical Learning Theory</title><source>Springer Books</source><creator>Soo Yun, Tae</creator><contributor>Mira, Jose ; Prieto, Alberto ; Prieto, Alberto ; Mira, José</contributor><creatorcontrib>Soo Yun, Tae ; Mira, Jose ; Prieto, Alberto ; Prieto, Alberto ; Mira, José</creatorcontrib><description>This paper has presented an efficient solder joint inspection technique through the use of wavelet transform and Support Vector Machines. The proposed scheme consists of two stages: a feature extraction stage for extracting features with wavelet transform, and a classification stage for classifying solder joints with a support vector machines. Experimental results show that the proposed method produces a high classification rate in the nonlinearly separable problem of classifying solder joints.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540422372</identifier><identifier>ISBN: 3540422374</identifier><identifier>ISBN: 3540422358</identifier><identifier>ISBN: 9783540422358</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540457232</identifier><identifier>EISBN: 9783540457237</identifier><identifier>DOI: 10.1007/3-540-45723-2_67</identifier><identifier>OCLC: 958523254</identifier><identifier>LCCallNum: Q334-342</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Good Generalization Performance ; Haar Wavelet ; Pattern recognition. Digital image processing. Computational geometry ; Solder Joint ; Statistical Learn Theory ; Support Vector Machine</subject><ispartof>Bio-Inspired Applications of Connectionism, 2001, Vol.2085, p.555-562</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3072987-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-45723-2_67$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-45723-2_67$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1018754$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Mira, Jose</contributor><contributor>Prieto, Alberto</contributor><contributor>Prieto, Alberto</contributor><contributor>Mira, José</contributor><creatorcontrib>Soo Yun, Tae</creatorcontrib><title>Classification of Specular Object Based on Statistical Learning Theory</title><title>Bio-Inspired Applications of Connectionism</title><description>This paper has presented an efficient solder joint inspection technique through the use of wavelet transform and Support Vector Machines. The proposed scheme consists of two stages: a feature extraction stage for extracting features with wavelet transform, and a classification stage for classifying solder joints with a support vector machines. Experimental results show that the proposed method produces a high classification rate in the nonlinearly separable problem of classifying solder joints.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Good Generalization Performance</subject><subject>Haar Wavelet</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Solder Joint</subject><subject>Statistical Learn Theory</subject><subject>Support Vector Machine</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540422372</isbn><isbn>3540422374</isbn><isbn>3540422358</isbn><isbn>9783540422358</isbn><isbn>3540457232</isbn><isbn>9783540457237</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUDtPwzAQNk8RSnfGDKwpts_JxSNUFJAqdWiZLce125SQBDsd-u9xS2856Xvp7iPkkdEJoxSfIcsFzUSOHDKuCrwg9xCRE8AvScIKxjIAIa_IWGJ54jgH5NckoUB5JlHALUlkXubRkYs7Mg5hR-MAZwUXCZlNGx1C7Wqjh7pr086ly96afaN9uqh21gzpqw52nUZuOURNGKK0SedW-7ZuN-lqazt_eCA3TjfBjs97RL5mb6vpRzZfvH9OX-ZZz0qOmaZIuXSypDk4x5FbxoWIrxqjgVal1OgqxypZrQ2Cta6yRliBlSwMk2hgRJ7-c3sd4hnO69bUQfW-_tH-oBhlJeYiyib_shCZdmO9qrruO0ReHYtVoGJV6tSjOhYbDXDO9d3v3oZB2aPD2HbwujFb3Q_WBwUUuSxRYQwoGfwBfiB1ew</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Soo Yun, Tae</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Classification of Specular Object Based on Statistical Learning Theory</title><author>Soo Yun, Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1827-a07029f98053ff272e1244007cca30b89a7fbf1b9bdc73eefbec4e47b96c197c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Good Generalization Performance</topic><topic>Haar Wavelet</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Solder Joint</topic><topic>Statistical Learn Theory</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soo Yun, Tae</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soo Yun, Tae</au><au>Mira, Jose</au><au>Prieto, Alberto</au><au>Prieto, Alberto</au><au>Mira, José</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Classification of Specular Object Based on Statistical Learning Theory</atitle><btitle>Bio-Inspired Applications of Connectionism</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2085</volume><spage>555</spage><epage>562</epage><pages>555-562</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540422372</isbn><isbn>3540422374</isbn><isbn>3540422358</isbn><isbn>9783540422358</isbn><eisbn>3540457232</eisbn><eisbn>9783540457237</eisbn><abstract>This paper has presented an efficient solder joint inspection technique through the use of wavelet transform and Support Vector Machines. The proposed scheme consists of two stages: a feature extraction stage for extracting features with wavelet transform, and a classification stage for classifying solder joints with a support vector machines. Experimental results show that the proposed method produces a high classification rate in the nonlinearly separable problem of classifying solder joints.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-45723-2_67</doi><oclcid>958523254</oclcid><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Bio-Inspired Applications of Connectionism, 2001, Vol.2085, p.555-562 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_1018754 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Good Generalization Performance Haar Wavelet Pattern recognition. Digital image processing. Computational geometry Solder Joint Statistical Learn Theory Support Vector Machine |
title | Classification of Specular Object Based on Statistical Learning Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Classification%20of%20Specular%20Object%20Based%20on%20Statistical%20Learning%20Theory&rft.btitle=Bio-Inspired%20Applications%20of%20Connectionism&rft.au=Soo%20Yun,%20Tae&rft.date=2001&rft.volume=2085&rft.spage=555&rft.epage=562&rft.pages=555-562&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540422372&rft.isbn_list=3540422374&rft.isbn_list=3540422358&rft.isbn_list=9783540422358&rft_id=info:doi/10.1007/3-540-45723-2_67&rft_dat=%3Cproquest_pasca%3EEBC3072987_73_581%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540457232&rft.eisbn_list=9783540457237&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3072987_73_581&rft_id=info:pmid/&rfr_iscdi=true |