Rule-Based Ensemble Solutions for Regression

We describe a lightweight learning method that induces an ensemble of decision-rule solutions for regression problems. Instead of direct prediction of a continuous output variable, the method discretizes the variable by k-means clustering and solves the resultant classification problem. Predictions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Indurkhya, Nitin, Weiss, Sholom M.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 62
container_title
container_volume 2123
creator Indurkhya, Nitin
Weiss, Sholom M.
description We describe a lightweight learning method that induces an ensemble of decision-rule solutions for regression problems. Instead of direct prediction of a continuous output variable, the method discretizes the variable by k-means clustering and solves the resultant classification problem. Predictions on new examples are made by averaging the mean values of classes with votes that are close in number to the most likely class. We provide experimental evidence that this indirect approach can often yield strong results for many applications, generally outperforming direct approaches such as regression trees and rivaling bagged regression trees.
doi_str_mv 10.1007/3-540-44596-X_6
format Book Chapter
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1017646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC3071933_12_72</sourcerecordid><originalsourceid>FETCH-LOGICAL-p265t-a70c87723048cf485dc2cfc6b734fe432f4d1b45e90b49d78d81dd52475195d43</originalsourceid><addsrcrecordid>eNotUMtOwzAQNE8RSs9cc-CIwfbacXyEqjykSkgFpN4sx3ZKIU2CnR74e9zHXlazMzurHYSuKbmjhMh7wIITzLlQBV7o4ghdQhrs8OIYZbSgFANwdYLGSpY7joFQ9BRlBAjDSnI4R5kSpWBAOLlA4xi_SSpgXEiZodv5pvH40UTv8mkb_bpqfP7eNZth1bUxr7uQz_0y-BgTvkJntWmiHx_6CH0-TT8mL3j29vw6eZjhnhViwEYSW0q5vVjampfCWWZrW1QSeO05sJo7WnHhFam4crJ0JXVOMC4FVcJxGKGbvW9vojVNHUxrV1H3YbU24U9TQmXBiyTDe1lMTLv0QVdd9xMTr7fpadApEL1LS6f0kp4dbEP3u_Fx0H67YH07BNPYL9MPPkQNRFIFoCnT6Yd_SxdrGg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC3071933_12_72</pqid></control><display><type>book_chapter</type><title>Rule-Based Ensemble Solutions for Regression</title><source>Springer Books</source><creator>Indurkhya, Nitin ; Weiss, Sholom M.</creator><contributor>Perner, Petra</contributor><creatorcontrib>Indurkhya, Nitin ; Weiss, Sholom M. ; Perner, Petra</creatorcontrib><description>We describe a lightweight learning method that induces an ensemble of decision-rule solutions for regression problems. Instead of direct prediction of a continuous output variable, the method discretizes the variable by k-means clustering and solves the resultant classification problem. Predictions on new examples are made by averaging the mean values of classes with votes that are close in number to the most likely class. We provide experimental evidence that this indirect approach can often yield strong results for many applications, generally outperforming direct approaches such as regression trees and rivaling bagged regression trees.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540423591</identifier><identifier>ISBN: 3540423591</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 354044596X</identifier><identifier>EISBN: 9783540445968</identifier><identifier>DOI: 10.1007/3-540-44596-X_6</identifier><identifier>OCLC: 958523040</identifier><identifier>LCCallNum: Q337.5</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Learning and adaptive systems ; Mean Absolute Deviation ; Regression Problem ; Regression Tree ; Rule Induction ; Training Case</subject><ispartof>Lecture notes in computer science, 2001, Vol.2123, p.62-72</ispartof><rights>Springer-Verlag Berlin Heidelberg 2001</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/3071933-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/3-540-44596-X_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/3-540-44596-X_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1017646$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Perner, Petra</contributor><creatorcontrib>Indurkhya, Nitin</creatorcontrib><creatorcontrib>Weiss, Sholom M.</creatorcontrib><title>Rule-Based Ensemble Solutions for Regression</title><title>Lecture notes in computer science</title><description>We describe a lightweight learning method that induces an ensemble of decision-rule solutions for regression problems. Instead of direct prediction of a continuous output variable, the method discretizes the variable by k-means clustering and solves the resultant classification problem. Predictions on new examples are made by averaging the mean values of classes with votes that are close in number to the most likely class. We provide experimental evidence that this indirect approach can often yield strong results for many applications, generally outperforming direct approaches such as regression trees and rivaling bagged regression trees.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Mean Absolute Deviation</subject><subject>Regression Problem</subject><subject>Regression Tree</subject><subject>Rule Induction</subject><subject>Training Case</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540423591</isbn><isbn>3540423591</isbn><isbn>354044596X</isbn><isbn>9783540445968</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2001</creationdate><recordtype>book_chapter</recordtype><recordid>eNotUMtOwzAQNE8RSs9cc-CIwfbacXyEqjykSkgFpN4sx3ZKIU2CnR74e9zHXlazMzurHYSuKbmjhMh7wIITzLlQBV7o4ghdQhrs8OIYZbSgFANwdYLGSpY7joFQ9BRlBAjDSnI4R5kSpWBAOLlA4xi_SSpgXEiZodv5pvH40UTv8mkb_bpqfP7eNZth1bUxr7uQz_0y-BgTvkJntWmiHx_6CH0-TT8mL3j29vw6eZjhnhViwEYSW0q5vVjampfCWWZrW1QSeO05sJo7WnHhFam4crJ0JXVOMC4FVcJxGKGbvW9vojVNHUxrV1H3YbU24U9TQmXBiyTDe1lMTLv0QVdd9xMTr7fpadApEL1LS6f0kp4dbEP3u_Fx0H67YH07BNPYL9MPPkQNRFIFoCnT6Yd_SxdrGg</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Indurkhya, Nitin</creator><creator>Weiss, Sholom M.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FFUUA</scope><scope>IQODW</scope></search><sort><creationdate>2001</creationdate><title>Rule-Based Ensemble Solutions for Regression</title><author>Indurkhya, Nitin ; Weiss, Sholom M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p265t-a70c87723048cf485dc2cfc6b734fe432f4d1b45e90b49d78d81dd52475195d43</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Mean Absolute Deviation</topic><topic>Regression Problem</topic><topic>Regression Tree</topic><topic>Rule Induction</topic><topic>Training Case</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Indurkhya, Nitin</creatorcontrib><creatorcontrib>Weiss, Sholom M.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Indurkhya, Nitin</au><au>Weiss, Sholom M.</au><au>Perner, Petra</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Rule-Based Ensemble Solutions for Regression</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2001</date><risdate>2001</risdate><volume>2123</volume><spage>62</spage><epage>72</epage><pages>62-72</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540423591</isbn><isbn>3540423591</isbn><eisbn>354044596X</eisbn><eisbn>9783540445968</eisbn><abstract>We describe a lightweight learning method that induces an ensemble of decision-rule solutions for regression problems. Instead of direct prediction of a continuous output variable, the method discretizes the variable by k-means clustering and solves the resultant classification problem. Predictions on new examples are made by averaging the mean values of classes with votes that are close in number to the most likely class. We provide experimental evidence that this indirect approach can often yield strong results for many applications, generally outperforming direct approaches such as regression trees and rivaling bagged regression trees.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/3-540-44596-X_6</doi><oclcid>958523040</oclcid><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2001, Vol.2123, p.62-72
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_1017646
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Learning and adaptive systems
Mean Absolute Deviation
Regression Problem
Regression Tree
Rule Induction
Training Case
title Rule-Based Ensemble Solutions for Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Rule-Based%20Ensemble%20Solutions%20for%20Regression&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Indurkhya,%20Nitin&rft.date=2001&rft.volume=2123&rft.spage=62&rft.epage=72&rft.pages=62-72&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540423591&rft.isbn_list=3540423591&rft_id=info:doi/10.1007/3-540-44596-X_6&rft_dat=%3Cproquest_pasca%3EEBC3071933_12_72%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=354044596X&rft.eisbn_list=9783540445968&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC3071933_12_72&rft_id=info:pmid/&rfr_iscdi=true